mindspore.ops.conv2d

mindspore.ops.conv2d(input, weight, bias=None, stride=1, pad_mode='valid', padding=0, dilation=1, groups=1)[源代码]

对输入Tensor计算二维卷积。该Tensor的常见shape为 (N,Cin,Hin,Win) ,其中 N 为batch size,Cin 为通道数, Hin,Win 分别为特征层的高度和宽度, Xiith 输入值, biith 输入值的偏置项。对于每个batch中的Tensor,其shape为 (Cin,Hin,Win) ,公式定义如下:

outj=i=0Cin1ccor(Wij,Xi)+bj,

其中, ccorcross-correlationCin 为输入通道数, j 的范围从 0Cout1Wij 对应第 j 个过滤器的第 i 个通道, outj 对应输出的第 j 个通道。 Wij 为卷积核的切片,其shape为 (kernel_size[0],kernel_size[1]) ,其中 kernel_size[0]kernel_size[1] 是卷积核的高度和宽度。完整卷积核的shape为 (Cout,Cin/groups,kernel_size[0],kernel_size[1]) ,其中 groups 是在通道上分割输入 input 的组数。

如果 pad_mode 设置为”valid”,则输出高度和宽度将分别为 1+Hin+padding[0]+padding[1]kernel_size[0](kernel_size[0]1)×(dilation[0]1)stride[0]1+Win+padding[2]+padding[3]kernel_size[1](kernel_size[1]1)×(dilation[1]1)stride[1] 。 其中, dialtion 为卷积核元素之间的间距, stride 为移动步长, padding 为添加到输入两侧的零填充。 对于取其他值的 pad_mode 时候的输出高度和宽度的计算,请参考 mindspore.nn.Conv2d 里的计算公式。

请参考论文 Gradient Based Learning Applied to Document Recognition 。更详细的介绍,参见: ConvNets

说明

在Ascend平台上,目前只支持深度卷积场景下的分组卷积运算。也就是说,当 groups>1 的场景下,必须要满足 C_{in} = C_{out} = groups 的约束条件。

参数:
  • input (Tensor) - shape为 (N,Cin,Hin,Win) 的Tensor。

  • weight (Tensor) - shape为 (Cout,Cin/groups,kernel_size[0],kernel_size[1]) ,则卷积核的大小为 (kernel_size[0],kernel_size[1])

  • bias (Tensor) - 偏置Tensor,shape为 (Cout) 的Tensor。如果 biasNone ,将不会添加偏置。默认值: None

  • stride (Union(int, tuple[int]),可选) - 卷积核移动的步长,数据类型为int,或者由两个或四个int组成的tuple。一个int表示在高度和宽度方向的移动步长均为该值。两个int组成的tuple分别表示在高度和宽度方向的移动步长。默认值: 1

  • pad_mode (str,可选) - 指定填充模式。取值为 "same""valid" ,或 "pad" 。默认值:"valid"

    • same: 输出的高度和宽度分别与输入整除 stride 后的值相同。填充将被均匀地添加到高和宽的两侧,剩余填充量将被添加到维度末端。若设置该模式,padding 的值必须为0。

    • valid: 在不填充的前提下返回有效计算所得的输出。不满足计算的多余像素会被丢弃。如果设置此模式,则 padding 的值必须为0。

    • pad: 对输入 input 进行填充。在输入的高度和宽度方向上填充 padding 大小的0。如果设置此模式, padding 必须大于或等于0。

  • padding (Union(int, tuple[int], list[int]),可选) - 输入 input 的高度和宽度方向上填充的数量。数据类型为int或包含2个int组成的tuple。如果 padding 是一个int,那么上、下、左、右的填充都等于 padding 。如果 padding 是一个有2个int组成的tuple,那么上、下的填充为 padding[0] ,左、右的填充为 padding[1] 。值必须大于等于0,默认值: 0

  • dilation (Union(int, tuple[int]),可选) - 卷积核元素间的间隔。数据类型为int或由2个int组成的tuple。若 k>1 ,则卷积核间隔 k 个元素进行采样。垂直和水平方向上的 k ,其取值范围分别为[1, H]和[1, W]。默认值: 1

  • groups (int,可选) - 将过滤器拆分为组。默认值: 1

返回:

Tensor,卷积后的值。shape为 (N,Cout,Hout,Wout)

异常:
  • TypeError - stridepaddingdilation 既不是int也不是tuple。

  • TypeError - groups 不是int。

  • TypeError - bias 不是Tensor。

  • ValueError - bias 的shape不是 (Cout)

  • ValueError - stridediation 小于1。

  • ValueError - pad_mode 不是”same”、”valid”或”pad”。

  • ValueError - padding 是一个长度不等于2的tuple或list。

  • ValueError - pad_mode 不等于”pad”时,padding 大于0。

支持平台:

Ascend GPU

样例:

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> x = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32)
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
>>> output = ops.conv2d(x, weight)
>>> print(output.shape)
(10, 32, 30, 30)