mindspore.Tensor.max
- mindspore.Tensor.max(axis=None, keepdims=False, *, initial=None, where=True, return_indices=False)[源代码]
返回Tensor的最大值或轴方向上的最大值。
说明
axis 为
None
时,keepdims 及以后参数均不会生效,同时索引固定返回0。
- 参数:
axis (Union[None, int, list, tuple of ints], 可选) - 轴,在该轴方向上进行操作。默认情况下,使用扁平输入。如果该参数为整数元组,则在多个轴上选择最大值,而不是在单个轴或所有轴上进行选择。默认值:
None
。keepdims (bool, 可选) - 如果这个参数为
True
,被删去的维度保留在结果中,且维度大小设为1。有了这个选项,结果就可以与输入数组进行正确的广播运算。默认值:False
。
- 关键字参数:
initial (scalar, 可选) - 输出元素的最小值。如果对空切片进行计算,则该参数必须设置。默认值:
None
。where (bool Tensor, 可选) - 一个bool数组,被广播以匹配数组维度和选择包含在降维中的元素。如果传递了一个非默认值,则还必须提供初始值。默认值:
True
。return_indices (bool, 可选) - 是否返回最大值的下标。默认值:
False
。如果 axis 是 一个list或一个int类型的tuple, 则必须取值为False
。
- 返回:
Tensor或标量,输入Tensor的最大值。如果 axis 为
None
,则结果是一个标量值。如果提供了 axis ,则结果是Tensor ndim - 1维度的一个数组。- 异常:
TypeError - 参数具有前面未指定的类型。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> import numpy as np >>> from mindspore import Tensor >>> a = Tensor(np.arange(4).reshape((2, 2)).astype('float32')) >>> output = a.max() >>> print(output) 3.0 >>> value, indices = a.max(axis=0, return_indices=True) >>> print(value) [2. 3.] >>> print(indices) [1 1]