mindspore.dataset.TedliumDataset

class mindspore.dataset.TedliumDataset(dataset_dir, release, usage=None, extensions=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None)[源代码]

Tedlium数据集。生成的数据集的列取决于源SPH文件和相应的STM文件。

生成的数据集有六列 [waveform, sample_rate, transcript, talk_id, speaker_id, identifier]。 列 waveform 的数据类型为float32,列 sample_rate 的数据类型为int32,列 transcript、列 talk_id、列 speaker_id 和列 identifier 的数据类型为string。

参数:
  • dataset_dir (str) - 包含数据集文件的根目录路径。

  • release (str) - 指定数据集的发布版本,可以取值为 'release1''release2''release3'

  • usage (str, 可选) - 指定数据集的子集。 对于 release'release1''release2'usage 可以是 'train''test''dev''all' 。 对于 release'release3'usage 只能是 'all' 。默认值: None ,读取全部样本。

  • extensions (str, 可选) - 指定SPH文件的扩展名。默认值: None ,默认指定为 '.sph'

  • num_samples (int, 可选) - 指定从数据集中读取的样本数。默认值: None ,读取全部样本。

  • num_parallel_workers (int, 可选) - 指定读取数据的工作线程数。默认值: None ,使用全局默认线程数(8),也可以通过 mindspore.dataset.config.set_num_parallel_workers() 配置全局线程数。

  • shuffle (bool, 可选) - 是否混洗数据集。默认值: None 。下表中会展示不同参数配置的预期行为。

  • sampler (Sampler, 可选) - 指定从数据集中选取样本的采样器。默认值: None 。下表中会展示不同配置的预期行为。

  • num_shards (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值: None 。指定此参数后, num_samples 表示每个分片的最大样本数。

  • shard_id (int, 可选) - 指定分布式训练时使用的分片ID号。默认值: None 。只有当指定了 num_shards 时才能指定此参数。

  • cache (DatasetCache, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 单节点数据缓存 。默认值: None ,不使用缓存。

异常:
  • RuntimeError - dataset_dir 路径下不包含任何数据文件。

  • RuntimeError - 同时指定了 samplershuffle 参数。

  • RuntimeError - 同时指定了 samplernum_shards 参数或同时指定了 samplershard_id 参数。

  • RuntimeError - 指定了 num_shards 参数,但是未指定 shard_id 参数。

  • RuntimeError - 指定了 shard_id 参数,但是未指定 num_shards 参数。

  • ValueError - num_parallel_workers 参数超过系统最大线程数。

  • ValueError - 如果 shard_id 取值不在[0, num_shards )范围。

样例:

>>> import mindspore.dataset as ds
>>> # 1) Get all train samples from TEDLIUM_release1 dataset in sequence.
>>> dataset = ds.TedliumDataset(dataset_dir="/path/to/tedlium1_dataset_directory",
...                             release="release1", shuffle=False)
>>>
>>> # 2) Randomly select 10 samples from TEDLIUM_release2 dataset.
>>> dataset = ds.TedliumDataset(dataset_dir="/path/to/tedlium2_dataset_directory",
...                             release="release2", num_samples=10, shuffle=True)
>>>
>>> # 3) Get samples from TEDLIUM_release-3 dataset for shard 0 in a 2-way distributed training.
>>> dataset = ds.TedliumDataset(dataset_dir="/path/to/tedlium3_dataset_directory",
...                             release="release3", num_shards=2, shard_id=0)
>>>
>>> # In TEDLIUM dataset, each dictionary has keys : waveform, sample_rate, transcript, talk_id,
>>> # speaker_id and identifier.
教程样例:

说明

此数据集可以指定参数 sampler ,但参数 sampler 和参数 shuffle 的行为是互斥的。下表展示了几种合法的输入参数组合及预期的行为。

配置 samplershuffle 的不同组合得到的预期排序结果

参数 sampler

参数 shuffle

预期数据顺序

None

None

随机排列

None

True

随机排列

None

False

顺序排列

sampler 实例

None

sampler 行为定义的顺序

sampler 实例

True

不允许

sampler 实例

False

不允许

关于TEDLIUM数据集:

TEDLIUM_release1数据集:TED-LUM语料库是英语TED演讲,有转录,采样频率为16kHz。包含了大约118小时的演讲。

TEDLIUM_release2数据集:这是TED-LIUM语料库版本2,根据知识共享BY-NC-ND 3.0授权。所有会谈和文本均为TED会议有限责任公司的财产。TED-LIUM语料库是由音频谈话和他们的转录在TED网站上提供的。我们准备并过滤了这些数据,以便训练声学模型参加2011年口语翻译国际研讨会(LIUM英语/法语SLT系统在SLT任务中排名第一)。

TEDLIUM_release-3数据集:这是TED-LIUM语料库版本3,根据知识共享BY-NC-ND 3.0授权。所有会谈和文本均为TED会议有限责任公司的财产。这个新的TED-LIUM版本是通过Ubiqus公司和LIUM(法国勒芒大学)的合作发布的。

可以将数据集文件解压缩到以下目录结构中,并由MindSpore的API读取。

TEDLIUM release1与TEDLIUM release2的结构相同,只是数据不同。

.
└──TEDLIUM_release1
    └── dev
        ├── sph
            ├── AlGore_2009.sph
            ├── BarrySchwartz_2005G.sph
        ├── stm
            ├── AlGore_2009.stm
            ├── BarrySchwartz_2005G.stm
    └── test
        ├── sph
            ├── AimeeMullins_2009P.sph
            ├── BillGates_2010.sph
        ├── stm
            ├── AimeeMullins_2009P.stm
            ├── BillGates_2010.stm
    └── train
        ├── sph
            ├── AaronHuey_2010X.sph
            ├── AdamGrosser_2007.sph
        ├── stm
            ├── AaronHuey_2010X.stm
            ├── AdamGrosser_2007.stm
    └── readme
    └── TEDLIUM.150k.dic

TEDLIUM release3目录结构稍有不同。

.
└──TEDLIUM_release-3
    └── data
        ├── ctl
        ├── sph
            ├── 911Mothers_2010W.sph
            ├── AalaElKhani.sph
        ├── stm
            ├── 911Mothers_2010W.stm
            ├── AalaElKhani.stm
    └── doc
    └── legacy
    └── LM
    └── speaker-adaptation
    └── readme
    └── TEDLIUM.150k.dic

引用:

@article{
  title={TED-LIUM: an automatic speech recognition dedicated corpus},
  author={A. Rousseau, P. Deléglise, Y. Estève},
  journal={Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)},
  year={May 2012},
  biburl={https://www.openslr.org/7/}
}

@article{
  title={Enhancing the TED-LIUM Corpus with Selected Data for Language Modeling and More TED Talks},
  author={A. Rousseau, P. Deléglise, and Y. Estève},
  journal={Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)},
  year={May 2014},
  biburl={https://www.openslr.org/19/}
}

@article{
  title={TED-LIUM 3: twice as much data and corpus repartition for experiments on speaker adaptation},
  author={François Hernandez, Vincent Nguyen, Sahar Ghannay, Natalia Tomashenko, and Yannick Estève},
  journal={the 20th International Conference on Speech and Computer (SPECOM 2018)},
  year={September 2018},
  biburl={https://www.openslr.org/51/}
}

预处理操作

mindspore.dataset.Dataset.apply

对数据集对象执行给定操作函数。

mindspore.dataset.Dataset.concat

对传入的多个数据集对象进行拼接操作。

mindspore.dataset.Dataset.filter

通过自定义判断条件对数据集对象中的数据进行过滤。

mindspore.dataset.Dataset.flat_map

对数据集对象中每一条数据执行给定的数据处理,并将结果展平。

mindspore.dataset.Dataset.map

给定一组数据增强列表,按顺序将数据增强作用在数据集对象上。

mindspore.dataset.Dataset.project

从数据集对象中选择需要的列,并按给定的列名的顺序进行排序。

mindspore.dataset.Dataset.rename

对数据集对象按指定的列名进行重命名。

mindspore.dataset.Dataset.repeat

重复此数据集 count 次。

mindspore.dataset.Dataset.reset

重置下一个epoch的数据集对象。

mindspore.dataset.Dataset.save

将数据处理管道中正处理的数据保存为通用的数据集格式。

mindspore.dataset.Dataset.shuffle

通过创建 buffer_size 大小的缓存来混洗该数据集。

mindspore.dataset.Dataset.skip

跳过此数据集对象的前 count 条数据。

mindspore.dataset.Dataset.split

将数据集拆分为多个不重叠的子数据集。

mindspore.dataset.Dataset.take

从数据集中获取最多 count 的元素。

mindspore.dataset.Dataset.zip

将多个dataset对象按列进行合并压缩,多个dataset对象不能有相同的列名。

Batch(批操作)

mindspore.dataset.Dataset.batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 per_batch_map 指定组合前要进行的预处理操作。

mindspore.dataset.Dataset.bucket_batch_by_length

根据数据的长度进行分桶。

mindspore.dataset.Dataset.padded_batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 pad_info 预先将样本补齐。

迭代器

mindspore.dataset.Dataset.create_dict_iterator

基于数据集对象创建迭代器。

mindspore.dataset.Dataset.create_tuple_iterator

基于数据集对象创建迭代器。

数据集属性

mindspore.dataset.Dataset.get_batch_size

获得数据集对象定义的批处理大小,即一个批处理数据中包含的数据条数。

mindspore.dataset.Dataset.get_class_indexing

返回类别索引。

mindspore.dataset.Dataset.get_col_names

返回数据集对象中包含的列名。

mindspore.dataset.Dataset.get_dataset_size

返回一个epoch中的batch数。

mindspore.dataset.Dataset.get_repeat_count

获取 RepeatDataset 中定义的repeat操作的次数。

mindspore.dataset.Dataset.input_indexs

获取/设置数据列索引,它表示使用下沉模式时数据列映射至网络中的对应关系。

mindspore.dataset.Dataset.num_classes

获取数据集对象中所有样本的类别数目。

mindspore.dataset.Dataset.output_shapes

获取数据集对象中每列数据的shape。

mindspore.dataset.Dataset.output_types

获取数据集对象中每列数据的数据类型。

应用采样方法

mindspore.dataset.MappableDataset.add_sampler

为当前数据集添加子采样器。

mindspore.dataset.MappableDataset.use_sampler

替换当前数据集的最末子采样器,保持父采样器不变。

其他方法

mindspore.dataset.Dataset.device_que

将数据异步传输到Ascend/GPU设备上。

mindspore.dataset.Dataset.sync_update

释放阻塞条件并使用给定数据触发回调函数。

mindspore.dataset.Dataset.sync_wait

为同步操作在数据集对象上添加阻塞条件。

mindspore.dataset.Dataset.to_json

将数据处理管道序列化为JSON字符串,如果提供了文件名,则转储到文件中。