mindspore.dataset.CocoDataset

class mindspore.dataset.CocoDataset(dataset_dir, annotation_file, task='Detection', num_samples=None, num_parallel_workers=None, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None, cache=None, extra_metadata=False, decrypt=None)[源代码]

COCO(Common Objects in Context)数据集。

该API支持解析COCO2017数据集,支持四种类型的机器学习任务,分别是目标检测、关键点检测、物体分割和全景分割。

参数:
  • dataset_dir (str) - 包含数据集文件的根目录路径。

  • annotation_file (str) - 数据集标注JSON文件的路径。

  • task (str, 可选) - 指定COCO数据的任务类型。支持的任务类型包括: 'Detection''Stuff''Panoptic''Keypoint' 。默认值: 'Detection'

  • num_samples (int, 可选) - 指定从数据集中读取的样本数,可以小于数据集总数。默认值: None ,读取全部样本图片。

  • num_parallel_workers (int, 可选) - 指定读取数据的工作线程数。默认值: None ,使用全局默认线程数(8),也可以通过 mindspore.dataset.config.set_num_parallel_workers() 配置全局线程数。

  • shuffle (bool, 可选) - 是否混洗数据集。默认值: None ,表2中会展示不同参数配置的预期行为。

  • decode (bool, 可选) - 是否对读取的图片进行解码操作。默认值: False ,不解码。

  • sampler (Sampler, 可选) - 指定从数据集中选取样本的采样器。默认值: None ,表2中会展示不同配置的预期行为。

  • num_shards (int, 可选) - 指定分布式训练时将数据集进行划分的分片数。默认值: None 。指定此参数后, num_samples 表示每个分片的最大样本数。

  • shard_id (int, 可选) - 指定分布式训练时使用的分片ID号。默认值: None 。只有当指定了 num_shards 时才能指定此参数。

  • cache (DatasetCache, 可选) - 单节点数据缓存服务,用于加快数据集处理,详情请阅读 单节点数据缓存 。默认值: None ,不使用缓存。

  • extra_metadata (bool, 可选) - 用于指定是否额外输出一个数据列用于表示图片元信息。如果为True,则将额外输出一个名为 [_meta-filename, dtype=string] 的数据列。默认值: False

  • decrypt (callable, 可选) - 图像解密函数,接受加密的图片路径并返回bytes类型的解密数据。默认值: None ,不进行解密。

[表1] 根据不同 task 参数设置,生成数据集具有不同的输出列:

task

输出列

Detection

[image, dtype=uint8]

[bbox, dtype=float32]

[category_id, dtype=uint32]

[iscrowd, dtype=uint32]

Stuff

[image, dtype=uint8]

[segmentation, dtype=float32]

[iscrowd, dtype=uint32]

Keypoint

[image, dtype=uint8]

[keypoints, dtype=float32]

[num_keypoints, dtype=uint32]

Panoptic

[image, dtype=uint8]

[bbox, dtype=float32]

[category_id, dtype=uint32]

[iscrowd, dtype=uint32]

[area, dtype=uint32]

异常:
  • RuntimeError - dataset_dir 路径下不包含任何数据文件。

  • RuntimeError - 同时指定了 samplershuffle 参数。

  • RuntimeError - 同时指定了 samplernum_shards 参数或同时指定了 samplershard_id 参数。

  • RuntimeError - 指定了 num_shards 参数,但是未指定 shard_id 参数。

  • RuntimeError - 指定了 shard_id 参数,但是未指定 num_shards 参数。

  • RuntimeError - 解析 annotation_file 指定的JSON文件失败。

  • ValueError - num_parallel_workers 参数超过系统最大线程数。

  • ValueError - task 参数取值不为 'Detection''Stuff''Panoptic''Keypoint'

  • ValueError - annotation_file 参数对应的文件不存在。

  • ValueError - dataset_dir 参数路径不存在。

  • ValueError - 如果 shard_id 取值不在[0, num_shards )范围。

样例:

>>> import mindspore.dataset as ds
>>> coco_dataset_dir = "/path/to/coco_dataset_directory/images"
>>> coco_annotation_file = "/path/to/coco_dataset_directory/annotation_file"
>>>
>>> # 1) Read COCO data for Detection task
>>> dataset = ds.CocoDataset(dataset_dir=coco_dataset_dir,
...                          annotation_file=coco_annotation_file,
...                          task='Detection')
>>>
>>> # 2) Read COCO data for Stuff task
>>> dataset = ds.CocoDataset(dataset_dir=coco_dataset_dir,
...                          annotation_file=coco_annotation_file,
...                          task='Stuff')
>>>
>>> # 3) Read COCO data for Panoptic task
>>> dataset = ds.CocoDataset(dataset_dir=coco_dataset_dir,
...                          annotation_file=coco_annotation_file,
...                          task='Panoptic')
>>>
>>> # 4) Read COCO data for Keypoint task
>>> dataset = ds.CocoDataset(dataset_dir=coco_dataset_dir,
...                          annotation_file=coco_annotation_file,
...                          task='Keypoint')
>>>
>>> # 5) Read COCO data for Captioning task
>>> dataset = ds.CocoDataset(dataset_dir=coco_dataset_dir,
...                          annotation_file=coco_annotation_file,
...                          task='Captioning')
>>>
>>> # In COCO dataset, each dictionary has keys "image" and "annotation"
教程样例:

说明

  • 当参数 extra_metadataTrue 时,还需使用 rename 操作删除额外数据列 ‘_meta-filename’的前缀 ‘_meta-’, 否则迭代得到的数据行中不会出现此额外数据列。

  • 暂不支持指定 sampler 参数为 mindspore.dataset.PKSampler

  • 此数据集可以指定参数 sampler ,但参数 sampler 和参数 shuffle 的行为是互斥的。下表展示了几种合法的输入参数组合及预期的行为。

[表2] 配置 samplershuffle 的不同组合得到的预期排序结果

参数 sampler

参数 shuffle

预期数据顺序

None

None

随机排列

None

True

随机排列

None

False

顺序排列

sampler 实例

None

sampler 行为定义的顺序

sampler 实例

True

不允许

sampler 实例

False

不允许

关于COCO数据集:

Microsoft Common Objects in Context(COCO)是一个大型数据集,该数据集专门为目标检测,语义分割和字幕生成任务而设计。它拥有330K张图像(标记数量大于200K个)、1500000个目标实例、80个目标类别、91个对象类别、每张图片均有5个字幕、带关键点标注的人有250000个。与流行的ImageNet数据集相比,COCO的类别较少,但每个类别中的图片样本非常多。

您可以解压缩原始COCO-2017数据集文件得到如下目录结构,并通过MindSpore的API读取。

.
└── coco_dataset_directory
     ├── train2017
     │    ├── 000000000009.jpg
     │    ├── 000000000025.jpg
     │    ├── ...
     ├── test2017
     │    ├── 000000000001.jpg
     │    ├── 000000058136.jpg
     │    ├── ...
     ├── val2017
     │    ├── 000000000139.jpg
     │    ├── 000000057027.jpg
     │    ├── ...
     └── annotation
          ├── captions_train2017.json
          ├── captions_val2017.json
          ├── instances_train2017.json
          ├── instances_val2017.json
          ├── person_keypoints_train2017.json
          └── person_keypoints_val2017.json

引用:

@article{DBLP:journals/corr/LinMBHPRDZ14,
author        = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and
                Lubomir D. Bourdev and  Ross B. Girshick and James Hays and
                Pietro Perona and Deva Ramanan and Piotr Doll{\'{a}}r and C. Lawrence Zitnick},
title         = {Microsoft {COCO:} Common Objects in Context},
journal       = {CoRR},
volume        = {abs/1405.0312},
year          = {2014},
url           = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint        = {1405.0312},
timestamp     = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl        = {https://dblp.org/rec/journals/corr/LinMBHPRDZ14.bib},
bibsource     = {dblp computer science bibliography, https://dblp.org}
}

预处理操作

mindspore.dataset.Dataset.apply

对数据集对象执行给定操作函数。

mindspore.dataset.Dataset.concat

对传入的多个数据集对象进行拼接操作。

mindspore.dataset.Dataset.filter

通过自定义判断条件对数据集对象中的数据进行过滤。

mindspore.dataset.Dataset.flat_map

对数据集对象中每一条数据执行给定的数据处理,并将结果展平。

mindspore.dataset.Dataset.map

给定一组数据增强列表,按顺序将数据增强作用在数据集对象上。

mindspore.dataset.Dataset.project

从数据集对象中选择需要的列,并按给定的列名的顺序进行排序。

mindspore.dataset.Dataset.rename

对数据集对象按指定的列名进行重命名。

mindspore.dataset.Dataset.repeat

重复此数据集 count 次。

mindspore.dataset.Dataset.reset

重置下一个epoch的数据集对象。

mindspore.dataset.Dataset.save

将数据处理管道中正处理的数据保存为通用的数据集格式。

mindspore.dataset.Dataset.shuffle

通过创建 buffer_size 大小的缓存来混洗该数据集。

mindspore.dataset.Dataset.skip

跳过此数据集对象的前 count 条数据。

mindspore.dataset.Dataset.split

将数据集拆分为多个不重叠的子数据集。

mindspore.dataset.Dataset.take

从数据集中获取最多 count 的元素。

mindspore.dataset.Dataset.zip

将多个dataset对象按列进行合并压缩,多个dataset对象不能有相同的列名。

Batch(批操作)

mindspore.dataset.Dataset.batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 per_batch_map 指定组合前要进行的预处理操作。

mindspore.dataset.Dataset.bucket_batch_by_length

根据数据的长度进行分桶。

mindspore.dataset.Dataset.padded_batch

将数据集中连续 batch_size 条数据组合为一个批数据,并可通过可选参数 pad_info 预先将样本补齐。

迭代器

mindspore.dataset.Dataset.create_dict_iterator

基于数据集对象创建迭代器。

mindspore.dataset.Dataset.create_tuple_iterator

基于数据集对象创建迭代器。

数据集属性

mindspore.dataset.Dataset.get_batch_size

获得数据集对象定义的批处理大小,即一个批处理数据中包含的数据条数。

mindspore.dataset.Dataset.get_class_indexing

返回类别索引。

mindspore.dataset.Dataset.get_col_names

返回数据集对象中包含的列名。

mindspore.dataset.Dataset.get_dataset_size

返回一个epoch中的batch数。

mindspore.dataset.Dataset.get_repeat_count

获取 RepeatDataset 中定义的repeat操作的次数。

mindspore.dataset.Dataset.input_indexs

获取/设置数据列索引,它表示使用下沉模式时数据列映射至网络中的对应关系。

mindspore.dataset.Dataset.num_classes

获取数据集对象中所有样本的类别数目。

mindspore.dataset.Dataset.output_shapes

获取数据集对象中每列数据的shape。

mindspore.dataset.Dataset.output_types

获取数据集对象中每列数据的数据类型。

应用采样方法

mindspore.dataset.MappableDataset.add_sampler

为当前数据集添加子采样器。

mindspore.dataset.MappableDataset.use_sampler

替换当前数据集的最末子采样器,保持父采样器不变。

其他方法

mindspore.dataset.Dataset.device_que

将数据异步传输到Ascend/GPU设备上。

mindspore.dataset.Dataset.sync_update

释放阻塞条件并使用给定数据触发回调函数。

mindspore.dataset.Dataset.sync_wait

为同步操作在数据集对象上添加阻塞条件。

mindspore.dataset.Dataset.to_json

将数据处理管道序列化为JSON字符串,如果提供了文件名,则转储到文件中。