文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.scipy.linalg.solve_triangular

mindspore.scipy.linalg.solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False, debug=None, check_finite=True)[源代码]

Assuming a is a batched triangular matrix, solve the equation

ax=b

Note

  • solve_triangular is not supported on Windows platform yet.

  • Only float32, float64, int32, int64 are supported Tensor dtypes. If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64.

  • The floating point error will accumulate when the size of input matrix gets larger. Substituting result x back into ax=b would be a way to evaluate the result. If the input shape is large enough, using float64 instead of float32 is also a way to mitigate the error.

Parameters
  • a (Tensor) – A non-singular triangular matrix of shape (M,M).

  • b (Tensor) – A Tensor of shape (M,) or (M,N). Right-hand side matrix in ax=b.

  • lower (bool, optional) – Use only data contained in the lower triangle of a. Default: False.

  • trans (0, 1, 2, 'N', 'T', 'C', optional) –

    Type of system to solve. Default: 0.

    trans

    system

    0 or ‘N’

    a x = b

    1 or ‘T’

    a^T x = b

    2 or ‘C’

    a^H x = b

  • unit_diagonal (bool, optional) – If True, diagonal elements of a are assumed to be 1 and will not be referenced. Default: False.

  • overwrite_b (bool, optional) – Allow overwriting data in b (may enhance performance). Default: False.

  • debug (None) – Not implemented now. Default: None.

  • check_finite (bool, optional) – Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True.

Returns

Tensor of shape (M,) or (M,N), which is the solution to the system ax=b. Shape of x matches b.

Raises
Supported Platforms:

CPU GPU

Examples

Solve the lower triangular system ax=b, where:

     [3  0  0  0]       [4]
a =  [2  1  0  0]   b = [2]
     [1  0  1  0]       [4]
     [1  1  1  1]       [2]
>>> import numpy as onp
>>> from mindspore.common import Tensor
>>> import mindspore.numpy as mnp
>>> from mindspore.scipy.linalg import solve_triangular
>>> a = Tensor(onp.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]], onp.float64))
>>> b = Tensor(onp.array([4, 2, 4, 2], onp.float64))
>>> x = solve_triangular(a, b, lower=True, unit_diagonal=False, trans='N')
>>> print(x)
[ 1.33333333 -0.66666667  2.66666667 -1.33333333]
>>> print(mnp.dot(a, x))  # Check the result
[4. 2. 4. 2.]