文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.Broadcast

class mindspore.ops.Broadcast(root_rank, group=GlobalComm.WORLD_COMM_GROUP)[源代码]

对输入数据整组广播。

Note

集合中的所有进程的Tensor的shape和数据格式相同。在运行下面样例时,用户需要预设通信环境变量,请在 MindSpore 官网上查看详情。

参数:
  • root_rank (int) - 表示发送源的进程编号。除发送数据的进程外,存在于所有进程中。

  • group (str) - 表示通信域。默认值:”hccl_world_group”。

输入:
  • input_x (Tensor) - Tensor的shape为 (x1,x2,...,xR)

输出:

Tensor,shape与输入相同,即 (x1,x2,...,xR) 。内容取决于 root_rank device的数据。

异常:
  • TypeError - root_rank不是int或group不是str。

支持平台:

Ascend GPU

样例:

>>> # This example should be run with multiple processes.
>>> # Please refer to the Programming Guide > Distributed Training -> Distributed Parallel Usage Example
>>> # on mindspore.cn and focus on the contents of these three parts: Configuring Distributed Environment
>>> # Variables, Calling the Collective Communication Library, Running The Script.
>>> import mindspore as ms
>>> from mindspore import Tensor
>>> from mindspore.communication import init
>>> import mindspore.nn as nn
>>> import mindspore.ops as ops
>>> import numpy as np
>>>
>>> ms.set_context(mode=ms.GRAPH_MODE)
>>> init()
>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.broadcast = ops.Broadcast(1)
...
...     def construct(self, x):
...         return self.broadcast((x,))
...
>>> input_x = Tensor(np.ones([2, 4]).astype(np.int32))
>>> net = Net()
>>> output = net(input_x)
>>> print(output)
(Tensor(shape[2,4], dtype=Int32, value=
[[1, 1, 1, 1],
 [1, 1, 1, 1]]),)