文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.L1Regularizer

class mindspore.nn.L1Regularizer(scale)[源代码]

对权重计算L1正则化。

L1正则化可导致稀疏权重。

loss=λreduce_sum(abs(ω))

λ 代表 scale

Note

正则化因子应为大于0。

参数:
  • scale (int, float) - L1正则化因子,其值大于0。

输入:
  • weights (Tensor) - L1Regularizer的输入,任意维度的Tensor,数据类型为float16或float32。

输出:

Tensor,其shape为(),默认数据类型为mindspore.float32,如果权重的数据类型精度更高,则以权重的数据类型作为输出数据类型。

异常:
  • TypeError - scale 既不是int也不是float。

  • ValueError - scale 不大于0。

  • ValueError - scale 是math.inf或math.nan。

支持平台:

Ascend GPU CPU

样例:

>>> scale = 0.5
>>> net = nn.L1Regularizer(scale)
>>> weights = Tensor(np.array([[1.0, -2.0], [-3.0, 4.0]]).astype(np.float32))
>>> output = net(weights)
>>> print(output.asnumpy())
5.0