比较与torch.nn.BatchNorm2d的功能差异
torch.nn.BatchNorm2d
class torch.nn.BatchNorm2d(
num_features,
eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True
)
更多内容详见torch.nn.BatchNorm2d。
mindspore.nn.BatchNorm2d
class mindspore.nn.BatchNorm2d(
num_features,
eps=1e-05,
momentum=0.9,
affine=True,
gamma_init="ones",
beta_init="zeros",
moving_mean_init="zeros",
moving_var_init="ones",
use_batch_statistics=None,
data_format="NCHW")
)
更多内容详见mindspore.nn.BatchNorm2d。
使用方式
PyTorch:用于running_mean和running_var计算的momentum参数的默认值为0.1。
MindSpore:momentum参数的默认值为0.9,与Pytorch的momentum关系为1-momentum,即当Pytorch的momentum值为0.2时,MindSpore的momemtum应为0.8。其中,beta、gamma、moving_mean和moving_variance参数分别对应Pytorch的bias、weight、running_mean和running_var参数。
代码示例
# The following implements BatchNorm2d with MindSpore.
import numpy as np
import torch
import mindspore.nn as nn
from mindspore import Tensor
net = nn.BatchNorm2d(num_features=2, momentum=0.8)
x = Tensor(np.array([[[[1, 2], [1, 2]], [[3, 4], [3, 4]]]]).astype(np.float32))
output = net(x)
print(output)
# Out:
# [[[[0.999995 1.99999]
# [0.999995 1.99999]]
#
# [[2.999985 3.99998]
# [2.999985 3.99998]]]]
# The following implements BatchNorm2d with torch.
input_x = torch.tensor(np.array([[[[1, 2], [1, 2]], [[3, 4], [3, 4]]]]).astype(np.float32))
m = torch.nn.BatchNorm2d(2, momentum=0.2)
output = m(input_x)
print(output)
# Out:
# tensor([[[[-1.0000, 1.0000],
# [-1.0000, 1.0000]],
#
# [[-1.0000, 1.0000],
# [-1.0000, 1.0000]]]], grad_fn=<NativeBatchNormBackward>)