比较与torch.nn.BatchNorm1d的功能差异
torch.nn.BatchNorm1d
class torch.nn.BatchNorm1d(
num_features,
eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True
)
更多内容详见torch.nn.BatchNorm1d。
mindspore.nn.BatchNorm1d
class mindspore.nn.BatchNorm1d(
num_features,
eps=1e-05,
momentum=0.9,
affine=True,
gamma_init="ones",
beta_init="zeros",
moving_mean_init="zeros",
moving_var_init="ones",
use_batch_statistics=None)
)
更多内容详见mindspore.nn.BatchNorm1d。
使用方式
PyTorch:用于running_mean和running_var计算的momentum参数的默认值为0.1。
MindSpore:momentum参数的默认值为0.9,与Pytorch的momentum关系为1-momentum,即当Pytorch的momentum值为0.2时,MindSpore的momemtum应为0.8。其中,beta、gamma、moving_mean和moving_variance参数分别对应Pytorch的bias、weight、running_mean和running_var参数。
代码示例
# The following implements BatchNorm1d with MindSpore.
import numpy as np
import torch
import mindspore.nn as nn
from mindspore import Tensor
net = nn.BatchNorm1d(num_features=4, momentum=0.8)
x = Tensor(np.array([[0.7, 0.5, 0.5, 0.6],
[0.5, 0.4, 0.6, 0.9]]).astype(np.float32))
output = net(x)
print(output)
# Out:
# [[ 0.6999965 0.4999975 0.4999975 0.59999704 ]
# [ 0.4999975 0.399998 0.59999704 0.89999545 ]]
# The following implements BatchNorm1d with torch.
input_x = torch.tensor(np.array([[0.7, 0.5, 0.5, 0.6],
[0.5, 0.4, 0.6, 0.9]]).astype(np.float32))
m = torch.nn.BatchNorm1d(4, momentum=0.2)
output = m(input_x)
print(output)
# Out:
# tensor([[ 0.9995, 0.9980, -0.9980, -0.9998],
# [-0.9995, -0.9980, 0.9980, 0.9998]],
# grad_fn=<NativeBatchNormBackward>)