文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

问题描述

请勾选同意隐私声明

mindspore.ops.uniform

mindspore.ops.uniform(shape, minval, maxval, seed=None, dtype=mstype.float32)[源代码]

生成服从均匀分布的随机数。

Note

广播后,任意位置上Tensor的最小值都必须小于最大值。

参数:

  • shape (tuple) - 指定输出shape,任意维度的Tensor。 其 (N,) 的长度应小于8。

  • minval (Tensor) - 指定生成随机值的最小值,其数据类型为int32或float32。如果数据类型为int32,则只允许输入一个数字。

  • maxval (Tensor) - 指定生成随机值的最大值,其数据类型为int32或float32。如果数据类型为int32,则只允许输入一个数字。

  • seed (int) - 指定随机种子,用于随机数生成器生成伪随机数。随机数为非负数。默认值:None(将被视为0)。

  • dtype (mindspore.dtype) - 指定输入的数据类型。如果数据类型为int32,则从离散型均匀分布中生成数值型数据;如果数据类型是float32,则从连续型均匀分布中生成数值型数据。仅支持这两种数据类型。默认值:mindspore.float32。

返回:

Tensor,shape等于输入 shapeminvalmaxval 广播后的shape。数据类型由输入 dtype 决定。

异常:

  • TypeError - shape 不是tuple。

  • TypeError - minvalmaxval 的数据类型既不是int32,也不是float32,并且 minval 的数据类型与 maxval 的不同。

  • TypeError - seed 不是int。

  • TypeError - dtype 既不是int32,也不是float32。

支持平台:

Ascend GPU

样例:

>>> from mindspore import Tensor, ops
>>> import mindspore
>>> import numpy as np
>>> # For discrete uniform distribution, only one number is allowed for both minval and maxval:
>>> shape = (4, 2)
>>> minval = Tensor(1, mindspore.int32)
>>> maxval = Tensor(2, mindspore.int32)
>>> output = ops.uniform(shape, minval, maxval, seed=5, dtype=mindspore.int32)
>>>
>>> # For continuous uniform distribution, minval and maxval can be multi-dimentional:
>>> shape = (3, 1, 2)
>>> minval = Tensor(np.array([[3, 4], [5, 6]]), mindspore.float32)
>>> maxval = Tensor([8.0, 10.0], mindspore.float32)
>>> output = ops.uniform(shape, minval, maxval, seed=5)
>>> result = output.shape
>>> print(result)
(3, 2, 2)