mindspore.nn.RMSProp
- class mindspore.nn.RMSProp(*args, **kwargs)[源代码]
均方根传播(RMSProp)算法的实现。
根据RMSProp算法更新 params,算法详见 [http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf] 第29页。
公式如下:
\[s_{t+1} = \rho s_{t} + (1 - \rho)(\nabla Q_{i}(w))^2\]\[m_{t+1} = \beta m_{t} + \frac{\eta} {\sqrt{s_{t+1} + \epsilon}} \nabla Q_{i}(w)\]\[w = w - m_{t+1}\]第一个方程计算每个权重的平方梯度的移动平均。然后将梯度除以 \(\sqrt{ms_{t+1} + \epsilon}\)。
如果centered为True:
\[g_{t+1} = \rho g_{t} + (1 - \rho)\nabla Q_{i}(w)\]\[s_{t+1} = \rho s_{t} + (1 - \rho)(\nabla Q_{i}(w))^2\]\[m_{t+1} = \beta m_{t} + \frac{\eta} {\sqrt{s_{t+1} - g_{t+1}^2 + \epsilon}} \nabla Q_{i}(w)\]\[w = w - m_{t+1}\]其中 \(w\) 代表待更新的网络参数 params。 \(g_{t+1}\) 是平均梯度。 \(s_{t+1}\) 是均方梯度。 \(m_{t+1}\) 是moment,w 的delta。 \(\rho\) 代表 decay。\(\beta\) 是动量项,表示 momentum。 \(\epsilon\) 是平滑项,可以避免除以零,表示 epsilon。 \(\eta\) 是学习率,表示 learning_rate。 \(\nabla Q_{i}(w)\) 是梯度,表示 gradients。 \(t\) 表示当前step。
Note
在参数未分组时,优化器配置的 weight_decay 应用于名称不含”beta”或”gamma”的网络参数。
参数分组情况下,可以分组调整权重衰减策略。
分组时,每组网络参数均可配置 weight_decay ,若未配置,则该组网络参数使用优化器中配置的 weight_decay 。
参数:
params (Union[list[Parameter], list[dict]]) - 必须是 Parameter 组成的列表或字典组成的列表。当列表元素是字典时,字典的键可以是”params”、”lr”、”weight_decay”、”grad_centralization”和”order_params”:
params - 必填。当前组别的权重,该值必须是 Parameter 列表。
lr - 可选。如果键中存在”lr”,则使用对应的值作为学习率。如果没有,则使用优化器中的参数 learning_rate 作为学习率。支持固定和动态学习率。
weight_decay - 可选。如果键中存在”weight_decay”,则使用对应的值作为权重衰减值。如果没有,则使用优化器中配置的 weight_decay 作为权重衰减值。 值得注意的是, weight_decay 可以是常量,也可以是Cell类型。Cell类型的weight decay用于实现动态weight decay算法。这和动态学习率相似。 用户需要自定义一个输入为global step的weight_decay_schedule。在训练的过程中,优化器会调用WeightDecaySchedule的实例来获取当前step的weight decay值。
grad_centralization - 可选。如果键中存在”grad_centralization”,则使用对应的值,该值必须为布尔类型。如果没有,则认为 grad_centralization 为False。该参数仅适用于卷积层。
order_params - 可选。值的顺序是参数更新的顺序。当使用参数分组功能时,通常使用该配置项保持 parameters 的顺序以提升性能。如果键中存在”order_params”,则会忽略该组配置中的其他键。”order_params”中的参数必须在某一组 params 参数中。
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]) - 默认值:0.1。
float - 固定的学习率。必须大于等于零。
int - 固定的学习率。必须大于等于零。整数类型会被转换为浮点数。
Tensor - 可以是标量或一维向量。标量是固定的学习率。一维向量是动态的学习率,第i步将取向量中第i个值作为学习率。
Iterable - 动态的学习率。第i步将取迭代器第i个值作为学习率。
LearningRateSchedule - 动态的学习率。在训练过程中,优化器将使用步数(step)作为输入,调用 LearningRateSchedule 实例来计算当前学习率。
decay (float) - 衰减率。必须大于等于0。默认值:0.9。
momentum (float) - Float类型的超参数,表示移动平均的动量(momentum)。必须大于等于0。默认值:0.0。
epsilon (float) - 将添加到分母中,以提高数值稳定性。取值大于0。默认值:1e-10。
use_locking (bool) - 是否对参数更新加锁保护。默认值:False。
centered (bool) - 如果为True,则梯度将通过梯度的估计方差进行归一。默认值:False。
loss_scale (float) - 梯度缩放系数,必须大于0。如果 loss_scale 是整数,它将被转换为浮点数。通常使用默认值,仅当训练时使用了 FixedLossScaleManager,且 FixedLossScaleManager 的 drop_overflow_update 属性配置为False时,此值需要与 FixedLossScaleManager 中的 loss_scale 相同。有关更多详细信息,请参阅
mindspore.FixedLossScaleManager
。默认值:1.0。weight_decay (Union[float, int, Cell]) - 权重衰减(L2 penalty)。默认值:0.0。
float: 固定值,必须大于或者等于0。
int: 固定值,必须大于或者等于0,会被转换成float。
Cell: 动态weight decay。在训练过程中,优化器会使用步数(step)作为输入,调用该Cell实例来计算当前weight decay值。
输入:
gradients (tuple[Tensor]) - params 的梯度,shape与 params 相同。
输出:
Tensor[bool],值为True。
异常:
TypeError - learning_rate 不是int、float、Tensor、Iterable或LearningRateSchedule。
TypeError - decay 、 momentum 、 epsilon 或 loss_scale 不是float。
TypeError - parameters 的元素不是Parameter或字典。
TypeError - weight_decay 不是float或int。
TypeError - use_locking 或 centered 不是bool。
ValueError - epsilon 小于或等于0。
ValueError - decay 或 momentum 小于0。
- 支持平台:
Ascend
GPU
CPU
样例:
>>> from mindspore import nn, Model >>> >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay >>> optim = nn.RMSProp(params=net.trainable_params(), learning_rate=0.1) >>> >>> #2) Use parameter groups and set different values >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params())) >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params())) >>> group_params = [{'params': conv_params, 'weight_decay': 0.01, 'grad_centralization':True}, ... {'params': no_conv_params, 'lr': 0.01}, ... {'order_params': net.trainable_params()}] >>> optim = nn.RMSProp(group_params, learning_rate=0.1, weight_decay=0.0) >>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01 and grad >>> # centralization of True. >>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0 and grad >>> # centralization of False. >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'. >>> >>> loss = nn.SoftmaxCrossEntropyWithLogits() >>> model = Model(net, loss_fn=loss, optimizer=optim)