mindspore.nn.Optimizer
- class mindspore.nn.Optimizer(learning_rate, parameters, weight_decay=0.0, loss_scale=1.0)[源代码]
用于参数更新的优化器基类。不要直接使用这个类,请实例化它的一个子类。
优化器支持参数分组。当参数分组时,每组参数均可配置不同的学习率(lr )、权重衰减(weight_decay)和梯度中心化(grad_centralization)策略。
Note
在参数未分组时,优化器配置的 weight_decay 应用于名称不含”beta”或”gamma”的网络参数。
参数分组情况下,可以分组调整权重衰减策略。
分组时,每组网络参数均可配置 weight_decay ,若未配置,则该组网络参数使用优化器中配置的 weight_decay 。
参数:
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]):
float - 固定的学习率。必须大于等于零。
int - 固定的学习率。必须大于等于零。整数类型会被转换为浮点数。
Tensor - 可以是标量或一维向量。标量是固定的学习率。一维向量是动态的学习率,第i步将取向量中第i个值作为学习率。
Iterable - 动态的学习率。第i步将取迭代器第i个值作为学习率。
LearningRateSchedule - 动态的学习率。在训练过程中,优化器将使用步数(step)作为输入,调用 LearningRateSchedule 实例来计算当前学习率。
parameters (Union[list[Parameter], list[dict]]) - 必须是 Parameter 组成的列表或字典组成的列表。当列表元素是字典时,字典的键可以是”params”、”lr”、”weight_decay”、”grad_centralization”和”order_params”:
params - 必填。当前组别的权重,该值必须是 Parameter 列表。
lr - 可选。如果键中存在”lr”,则使用对应的值作为学习率。如果没有,则使用优化器中的参数 learning_rate 作为学习率。支持固定和动态学习率。
weight_decay - 可选。如果键中存在”weight_decay”,则使用对应的值作为权重衰减值。如果没有,则使用优化器中配置的 weight_decay 作为权重衰减值。
grad_centralization - 可选。如果键中存在”grad_centralization”,则使用对应的值,该值必须为布尔类型。如果没有,则认为 grad_centralization 为False。该参数仅适用于卷积层。
order_params - 可选。值的顺序是参数更新的顺序。当使用参数分组功能时,通常使用该配置项保持 parameters 的顺序以提升性能。如果键中存在”order_params”,则会忽略该组配置中的其他键。”order_params”中的参数必须在某一组 params 参数中。
weight_decay (Union[float, int]) - 权重衰减的整数或浮点值。必须等于或大于0。如果 weight_decay 是整数,它将被转换为浮点数。默认值:0.0。
loss_scale (float) - 梯度缩放系数,必须大于0。如果 loss_scale 是整数,它将被转换为浮点数。通常使用默认值,仅当训练时使用了 FixedLossScaleManager,且 FixedLossScaleManager 的 drop_overflow_update 属性配置为False时,此值需要与 FixedLossScaleManager 中的 loss_scale 相同。有关更多详细信息,请参阅
mindspore.FixedLossScaleManager
。默认值:1.0。
异常:
TypeError - learning_rate 不是int、float、Tensor、Iterable或LearningRateSchedule。
TypeError - parameters 的元素不是Parameter或字典。
TypeError - loss_scale 不是float。
TypeError - weight_decay 不是float或int。
ValueError - loss_scale 小于或等于0。
ValueError - weight_decay 小于0。
ValueError - learning_rate 是一个Tensor,但是Tensor的维度大于1。
- 支持平台:
Ascend
GPU
CPU
- broadcast_params(optim_result)[源代码]
按参数组的顺序进行参数广播。
参数:
optim_result (bool) - 参数更新结果。该输入用来保证参数更新完成后才执行参数广播。
返回:
bool,状态标志。
- decay_weight(gradients)[源代码]
衰减权重。
一种减少深度学习神经网络模型过拟合的方法。继承
mindspore.nn.Optimizer
自定义优化器时,可调用该接口进行权重衰减。参数:
gradients (tuple[Tensor]) - 网络参数的梯度,形状(shape)与网络参数相同。
返回:
tuple[Tensor],衰减权重后的梯度。
- get_lr()[源代码]
优化器调用该接口获取当前步骤(step)的学习率。继承
mindspore.nn.Optimizer
自定义优化器时,可在参数更新前调用该接口获取学习率。返回:
float,当前步骤的学习率。
- get_lr_parameter(param)[源代码]
用于在使用网络参数分组功能,且为不同组别配置不同的学习率时,获取指定参数的学习率。
参数:
param (Union[Parameter, list[Parameter]]) - Parameter 或 Parameter 列表。
返回:
Parameter,单个 Parameter 或 Parameter 列表。如果使用了动态学习率,返回用于计算学习率的 LearningRateSchedule 或 LearningRateSchedule 列表。
样例:
>>> from mindspore import nn >>> net = Net() >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params())) >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params())) >>> group_params = [{'params': conv_params, 'lr': 0.05}, ... {'params': no_conv_params, 'lr': 0.01}] >>> optim = nn.Momentum(group_params, learning_rate=0.1, momentum=0.9, weight_decay=0.0) >>> conv_lr = optim.get_lr_parameter(conv_params) >>> print(conv_lr[0].asnumpy()) 0.05
- get_weight_decay()[源代码]
优化器调用该接口获取当前步骤(step)的weight decay值。继承
mindspore.nn.Optimizer
自定义优化器时,可在参数更新前调用该接口获取weight decay值。返回:
float,当前步骤的weight decay值。
- gradients_centralization(gradients)[源代码]
梯度中心化。
一种优化卷积层参数以提高深度学习神经网络模型训练速度的方法。继承
mindspore.nn.Optimizer
自定义优化器时,可调用该接口进行梯度中心化。参数:
gradients (tuple[Tensor]) - 网络参数的梯度,形状(shape)与网络参数相同。
返回:
tuple[Tensor],梯度中心化后的梯度。
- scale_grad(gradients)[源代码]
用于在混合精度场景还原梯度。
继承
mindspore.nn.Optimizer
自定义优化器时,可调用该接口还原梯度。参数:
gradients (tuple[Tensor]) - 网络参数的梯度,形状(shape)与网络参数相同。
返回:
tuple[Tensor],还原后的梯度。
- property target
该属性用于指定在主机(host)上还是设备(device)上更新参数。输入类型为str,只能是’CPU’,’Ascend’或’GPU’。
- property unique
该属性表示是否在优化器中进行梯度去重,通常用于稀疏网络。如果梯度是稀疏的则设置为True。如果前向稀疏网络已对权重去重,即梯度是稠密的,则设置为False。未进行任何配置时默认为True。