TrainOneStepCell
TrainOneStepCell
功能是执行网络的单步训练,返回每次训练结果后的loss结果。
下面构造一个使用TrainOneStepCell
接口进行网络训练的实例,其中LeNet5
和包名的导入代码和上个用例共用。
import numpy as np
from mindspore import Tensor
import mindspore.nn as nn
from mindspore.nn import Momentum, WithLossCell, TrainOneStepCell
from mindspore.common.initializer import Normal
class LeNet5(nn.Cell):
"""
Lenet network
Args:
num_class (int): Number of classes. Default: 10.
num_channel (int): Number of channels. Default: 1.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
"""
def __init__(self, num_class=10, num_channel=1, include_top=True):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.include_top = include_top
if self.include_top:
self.flatten = nn.Flatten()
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
if not self.include_top:
return x
x = self.flatten(x)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
if __name__=="__main__":
data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([32]).astype(np.int32))
net = LeNet5()
learning_rate = 0.01
momentum = 0.9
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer)
for i in range(5):
train_network.set_train()
res = train_network(data, label)
print(f"+++++++++result:{i}++++++++++++")
print(res)
+++++++++result:0++++++++++++
2.302585
+++++++++result:1++++++++++++
2.2935712
+++++++++result:2++++++++++++
2.2764661
+++++++++result:3++++++++++++
2.2521412
+++++++++result:4++++++++++++
2.2214084
用例中构造了优化器和一个WithLossCell
的实例,然后传入TrainOneStepCell
中初始化一个训练网络,用例循环五次,相当于网络训练了五次,并输出每次的loss结果,由结果可以看出每次训练后loss值在逐渐减小。
后续内容会介绍MindSpore使用更加高级封装的接口,即Model类中的train方法训练模型,在其内部实现中会用到 TrainOneStepCell
和WithLossCell
等许多网络组件,感兴趣的读者可以查看其内部实现。