mindspore.dataset.vision.RandomColor
- class mindspore.dataset.vision.RandomColor(degrees=(0.1, 1.9))[source]
- Adjust the color of the input image by a fixed or random degree. This operation works only with 3-channel color images. - Parameters
- degrees (Sequence[float], optional) – Range of random color adjustment degrees, which must be non-negative. It should be in (min, max) format. If min=max, then it is a single fixed magnitude operation. Default: - (0.1, 1.9).
- Raises
- TypeError – If degrees is not of type Sequence[float]. 
- ValueError – If degrees is negative. 
- RuntimeError – If given tensor shape is not <H, W, C>. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.RandomColor((0.5, 2.0))] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.RandomColor((0.1, 1.9))(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8 - Tutorial Examples: