mindspore.dataset.vision.RandomAutoContrast
- class mindspore.dataset.vision.RandomAutoContrast(cutoff=0.0, ignore=None, prob=0.5)[source]
- Automatically adjust the contrast of the image with a given probability. - Parameters
- cutoff (float, optional) – Percent of the lightest and darkest pixels to be cut off from the histogram of the input image. The value must be in range of [0.0, 50.0]. Default: - 0.0.
- ignore (Union[int, sequence], optional) – The background pixel values to be ignored, each of which must be in range of [0, 255]. Default: - None.
- prob (float, optional) – Probability of the image being automatically contrasted, which must be in range of [0.0, 1.0]. Default: - 0.5.
 
- Raises
- TypeError – If cutoff is not of type float. 
- TypeError – If ignore is not of type integer or sequence of integer. 
- TypeError – If prob is not of type float. 
- ValueError – If cutoff is not in range [0.0, 50.0). 
- ValueError – If ignore is not in range [0, 255]. 
- ValueError – If prob is not in range [0.0, 1.0]. 
- RuntimeError – If given tensor shape is not <H, W> or <H, W, C>. 
 
 - Supported Platforms:
- CPU
 - Examples - >>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.RandomAutoContrast(cutoff=0.0, ignore=None, prob=0.5)] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.RandomAutoContrast(cutoff=0.0, ignore=None, prob=1.0)(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8 - Tutorial Examples: