Differences with torchaudio.transforms.GriffinLim

View Source On Gitee

torchaudio.transforms.GriffinLim

class torchaudio.transforms.GriffinLim(n_fft: int = 400, n_iter: int = 32, win_length: Optional[int] = None, hop_length: Optional[int] = None,
                                       window_fn: Callable[[...], torch.Tensor] = <built-in method hann_window of type object>, power: float = 2.0,
                                       normalized: bool = False, wkwargs: Optional[dict] = None, momentum: float = 0.99,
                                       length: Optional[int] = None, rand_init: bool = True)

For more information, see torchaudio.transforms.GriffinLim.

mindspore.dataset.audio.GriffinLim

class mindspore.dataset.audio.GriffinLim(n_fft=400, n_iter=32, win_length=None, hop_length=None,
                                         window_type=WindowType.HANN, power=2.0,
                                         momentum=0.99, length=None, rand_init=True)

For more information, see mindspore.dataset.audio.GriffinLim.

Differences

PyTorch:Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation. Customized window function and different parameter configs for window function are both supported.

MindSpore:Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation.

Categories

Subcategories

PyTorch

MindSpore

Difference

Parameter

Parameter1

n_fft

n_fft

-

Parameter2

n_iter

n_iter

-

Parameter3

win_length

win_length

-

Parameter4

hop_length

hop_length

-

Parameter5

window_fn

window_type

MindSpore only supports 5 window functions

Parameter6

power

power

-

Parameter7

normalized

-

Whether to normalize by magnitude after stft, not supported by MindSpore

Parameter8

wkwargs

-

Arguments for window function, not supported by MindSpore

Parameter9

momentum

momentum

-

Parameter10

length

length

-

Parameter11

rand_init

rand_init

-

Code Example

import numpy as np

fake_input = np.ones((151, 36)).astype(np.float32)

# PyTorch
import torch
import torchaudio.transforms as T
torch.manual_seed(1)

transformer = T.GriffinLim(n_fft=300, n_iter=10, win_length=None, hop_length=None, window_fn=torch.hann_window, power=2, momentum=0.5)
torch_result = transformer(torch.from_numpy(fake_input))
print(torch_result)
# Out: tensor([-0.0800,  0.1134, -0.0888,  ..., -0.0610, -0.0206, -0.1800])

# MindSpore
import mindspore as ms
import mindspore.dataset.audio as audio
ms.dataset.config.set_seed(3)

transformer = audio.GriffinLim(n_fft=300, n_iter=10, win_length=None, hop_length=None, window_type=audio.WindowType.HANN, power=2, momentum=0.5)
ms_result = transformer(fake_input)
print(ms_result)
# Out: [-0.08666667  0.06763329 -0.03155987 ... -0.07218403 -0.01178891 -0.00664348]