Differences with torchvision.datasets.Cityscapes
torchvision.datasets.Cityscapes
class torchvision.datasets.Cityscapes(
root: str,
split: str,
mode: str,
target_type: str or list,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None
)
For more information, see torchvision.datasets.Cityscapes.
mindspore.dataset.CityscapesDataset
class mindspore.dataset.CityscapesDataset(
dataset_dir,
usage='train',
quality_mode='fine',
task='instance',
num_samples=None,
num_parallel_workers=None,
shuffle=None,
decode=False,
sampler=None,
num_shards=None,
shard_id=None,
cache=None
)
For more information, see mindspore.dataset.CityscapesDataset.
Differences
PyTorch: Read the Cityscapes dataset.
MindSpore: Read the Cityscapes dataset. Downloading dataset from web is not supported.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameter |
Parameter1 |
root |
dataset_dir |
- |
Parameter2 |
split |
usage |
- |
|
Parameter3 |
mode |
quality_mode |
- |
|
Parameter4 |
target_type |
task |
- |
|
Parameter5 |
transform |
- |
Supported by |
|
Parameter6 |
target_transform |
- |
Supported by |
|
Parameter7 |
transforms |
- |
Supported by |
|
Parameter8 |
- |
num_samples |
The number of images to be included in the dataset. |
|
Parameter9 |
- |
num_parallel_workers |
Number of worker threads to read the data |
|
Parameter10 |
- |
shuffle |
Whether to perform shuffle on the dataset |
|
Parameter11 |
- |
decode |
Decode the images after reading |
|
Parameter12 |
- |
sampler |
Object used to choose samples from the dataset |
|
Parameter13 |
- |
num_shards |
Number of shards that the dataset will be divided into |
|
Parameter14 |
- |
shard_id |
The shard ID within num_shards |
|
Parameter15 |
- |
cache |
Use tensor caching service to speed up dataset processing |
Code Example
# PyTorch
import torchvision.transforms as T
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
root = "/path/to/dataset_directory/"
dataset = datasets.Cityscapes(root, split='train', mode='fine', target_type='semantic')
dataloader = DataLoader(dataset)
# MindSpore
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
# Download the dataset files, unzip into the following structure
# .
# └── "/path/to/dataset_directory"
# ├── leftImg8bit
# | ├── train
# | | ├── aachen
# | | | ├── aachen_000000_000019_leftImg8bit.png
# | | | ├── aachen_000001_000019_leftImg8bit.png
# | | | ├── ...
# | | ├── bochum
# | | | ├── ...
# | | ├── ...
# | ├── test
# | | ├── ...
# | ├── val
# | | ├── ...
# └── gtFine
# ├── train
# | ├── aachen
# | | ├── aachen_000000_000019_gtFine_color.png
# | | ├── aachen_000000_000019_gtFine_instanceIds.png
# | | ├── aachen_000000_000019_gtFine_labelIds.png
# | | ├── aachen_000000_000019_gtFine_polygons.json
# | | ├── aachen_000001_000019_gtFine_color.png
# | | ├── aachen_000001_000019_gtFine_instanceIds.png
# | | ├── aachen_000001_000019_gtFine_labelIds.png
# | | ├── aachen_000001_000019_gtFine_polygons.json
# | | ├── ...
# | ├── bochum
# | | ├── ...
# | ├── ...
# ├── test
# | ├── ...
# └── val
# ├── ...
root = "/path/to/dataset_directory/"
ms_dataloader = ds.CityscapesDataset(root, usage='train')
ms_dataloader = ms_dataloader.map(vision.RandomCrop((28, 28)), ["image"])