mindspore.ops.col2im
- mindspore.ops.col2im(input_x, output_size, kernel_size, dilation, padding_value, stride)[source]
Combines an array of sliding local blocks into a large containing tensor.
- Parameters
input_x (Tensor) – 4D tensor with data type float16 or float32.
output_size (Tensor) – 1D tensor with 2 elements of data type int.
kernel_size (Union[int, tuple[int], list[int]]) – The size of the kernel, should be two int for height and width. If type is int, it means that height equal with width. Must be specified.
dilation (Union[int, tuple[int], list[int]]) – The size of the dilation, should be two int for height and width. If type is int, it means that height equal with width.
padding_value (Union[int, tuple[int], list[int]]) – The size of the padding, should be two int for height and width. If type is int, it means that height equal with width.
stride (Union[int, tuple[int], list[int]]) – The size of the stride, should be two int for height and width. If type is int, it means that height equal with width.
- Returns
A 4D Tensor, with same type as ‘input_x’.
- Raises
TypeError – If
kernel_size
, dilation, padding_value, stride data type is not in Union[int, tuple[int], list[int]].ValueError – If
kernel_size
, dilation, padding_value, stride value is not greater than zero or elements number more than 2.ValueError – If
padding_value
value is less than zero or elements number more than 2.ValueError – If input_x.shape[2] != kernel_size[0] * kernel_size[1].
ValueError – If input_x.shape[3] does not match the calculated number of sliding blocks.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> from mindspore import Tensor, ops >>> from mindspore import dtype as mstype >>> x = Tensor(input_data=np.random.rand(16, 16, 4, 25), dtype=mstype.float32) >>> output_size = Tensor(input_data=[8, 8], dtype=mstype.int32) >>> output = ops.col2im(x, output_size, [2, 2], [2, 2], [2, 2], [2, 2]) >>> print(output.shape) (16, 16, 8, 8)