mindspore.ops.ComputeAccidentalHits
- class mindspore.ops.ComputeAccidentalHits(num_true=1)[source]
Compute accidental hits of sampled classes which match target classes.
When a target class matches the sample class, we call it “accidental hit”. The result of calculating accidental hits contain three parts (index, id, weight), where index represents the row number in true_classes, and id represents the position in sampled_candidates, the weight is FLOAT_MAX. FLOAT_MAX indicates the max value in the type of Float
- Parameters
num_true (int) – The number of target classes per training example. Default:
1
.
- Inputs:
true_classes (Tensor) - The target classes. With data type of int64 and shape \((batch\_size, num\_true)\).
sampled_candidates (Tensor) - The Candidate sampling results of operators, types of training samples, with data type of int64 and shape \((num\_sampled, )\).
- Outputs:
Tuple of 3 Tensors.
indices (Tensor) - A Tensor with shape \((num\_accidental\_hits, )\), with data type of int32.
ids (Tensor) - A Tensor with shape \((num\_accidental\_hits, )\), with data type of int64.
weights (Tensor) - A Tensor with shape \((num\_accidental\_hits, )\), with the type float32.
- Raises
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> from mindspore import Tensor, ops >>> true_classes = np.array([[1, 2], [0, 4], [3, 3]]) >>> sampled_candidates = np.array([0, 1, 2, 3, 4]) >>> sampler = ops.ComputeAccidentalHits(2) >>> indices, ids, weights = sampler(Tensor(true_classes), Tensor(sampled_candidates)) >>> print(indices, ids, weights) [0 0 1 1 2 2] [1 2 0 4 3 3] [-3.4028235e+38 -3.4028235e+38 -3.4028235e+38 -3.4028235e+38 -3.4028235e+38 -3.4028235e+38]