Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.nn.GRUCell

class mindspore.nn.GRUCell(input_size: int, hidden_size: int, has_bias: bool = True, dtype=mstype.float32)[source]

A GRU(Gated Recurrent Unit) cell.

r=σ(Wirx+bir+Whrh+bhr)z=σ(Wizx+biz+Whzh+bhz)n=tanh(Winx+bin+r(Whnh+bhn))h=(1z)n+zh

Here σ is the sigmoid function, and is the Hadamard product. W,b are learnable weights between the output and the input in the formula. h is hidden state. r is reset gate. z is update gate. n is n-th layer. For instance, Wir,bir are the weight and bias used to transform from input x to r. Details can be found in paper Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation.

Parameters
  • input_size (int) – Number of features of input.

  • hidden_size (int) – Number of features of hidden layer.

  • has_bias (bool) – Whether the cell has bias bin and bhn. Default: True .

  • dtype (mindspore.dtype) – Dtype of Parameters. Default: mstype.float32 .

Inputs:
  • x (Tensor) - Tensor of shape (batch_size,input_size) .

  • hx (Tensor) - Tensor of data type mindspore.float32 and shape (batch_size,hidden_size) .

Outputs:
  • hx’ (Tensor) - Tensor of shape (batch_size,hidden_size) .

Raises
  • TypeError – If input_size, hidden_size is not an int.

  • TypeError – If has_bias is not a bool.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore as ms
>>> import numpy as np
>>> net = ms.nn.GRUCell(10, 16)
>>> x = ms.Tensor(np.ones([5, 3, 10]).astype(np.float32))
>>> hx = ms.Tensor(np.ones([3, 16]).astype(np.float32))
>>> output = []
>>> for i in range(5):
...     hx = net(x[i], hx)
...     output.append(hx)
>>> print(output[0].shape)
(3, 16)