mindspore.dataset.text.UnicodeScriptTokenizer
- class mindspore.dataset.text.UnicodeScriptTokenizer(keep_whitespace=False, with_offsets=False)[source]
Tokenize a scalar tensor of UTF-8 string based on Unicode script boundaries.
Note
UnicodeScriptTokenizer is not supported on Windows platform yet.
- Parameters
- Raises
- Supported Platforms:
CPU
Examples
>>> import mindspore.dataset as ds >>> import mindspore.dataset.text as text >>> >>> # Use the transform in dataset pipeline mode >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["北 京", "123", "欢 迎", "你"], ... column_names=["text"], shuffle=False) >>> >>> # 1) If with_offsets=False, default output one column {["text", dtype=str]} >>> tokenizer_op = text.UnicodeScriptTokenizer(keep_whitespace=True, with_offsets=False) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["text"]) ... break ['北' ' ' '京'] >>> >>> # 2) If with_offsets=True, then output three columns {["token", dtype=str], >>> # ["offsets_start", dtype=uint32], >>> # ["offsets_limit", dtype=uint32]} >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["北 京", "123", "欢 迎", "你"], ... column_names=["text"], shuffle=False) >>> tokenizer_op = text.UnicodeScriptTokenizer(keep_whitespace=True, with_offsets=True) >>> numpy_slices_dataset = numpy_slices_dataset.map( ... operations=tokenizer_op, ... input_columns=["text"], ... output_columns=["token", "offsets_start", "offsets_limit"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["token"], item["offsets_start"], item["offsets_limit"]) ... break ['北' ' ' '京'] [0 3 4] [3 4 7] >>> >>> # Use the transform in eager mode >>> data = "北 京" >>> unicode_script_tokenizer_op = text.UnicodeScriptTokenizer(keep_whitespace=True, with_offsets=False) >>> output = unicode_script_tokenizer_op(data) >>> print(output) ['北' ' ' '京']
- Tutorial Examples: