mindspore.dataset.USPSDataset

class mindspore.dataset.USPSDataset(dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL, num_shards=None, shard_id=None, cache=None)[source]

USPS(U.S. Postal Service) dataset.

The generated dataset has two columns: [image, label] . The tensor of column image is of the uint8 type. The tensor of column label is of the uint32 type.

Parameters
  • dataset_dir (str) – Path to the root directory that contains the dataset.

  • usage (str, optional) – Usage of this dataset, can be 'train', 'test' or 'all' . 'train' will read from 7,291 train samples, 'test' will read from 2,007 test samples, 'all' will read from all 9,298 samples. Default: None , will read all samples.

  • num_samples (int, optional) – The number of images to be included in the dataset. Default: None , will read all images.

  • num_parallel_workers (int, optional) – Number of worker threads to read the data. Default: None , will use global default workers(8), it can be set by mindspore.dataset.config.set_num_parallel_workers() .

  • shuffle (Union[bool, Shuffle], optional) –

    Perform reshuffling of the data every epoch. Bool type and Shuffle enum are both supported to pass in. Default: Shuffle.GLOBAL . If shuffle is False , no shuffling will be performed. If shuffle is True , it is equivalent to setting shuffle to mindspore.dataset.Shuffle.GLOBAL. Set the mode of data shuffling by passing in enumeration variables:

    • Shuffle.GLOBAL : Shuffle both the files and samples.

    • Shuffle.FILES : Shuffle files only.

  • num_shards (int, optional) – Number of shards that the dataset will be divided into. Default: None . When this argument is specified, num_samples reflects the max sample number of per shard.

  • shard_id (int, optional) – The shard ID within num_shards . Default: None . This argument can only be specified when num_shards is also specified.

  • cache (DatasetCache, optional) – Use tensor caching service to speed up dataset processing. More details: Single-Node Data Cache . Default: None , which means no cache is used.

Raises
  • RuntimeError – If dataset_dir is not valid or does not exist or does not contain data files.

  • RuntimeError – If num_shards is specified but shard_id is None.

  • RuntimeError – If shard_id is specified but num_shards is None.

  • ValueError – If usage is invalid.

  • ValueError – If num_parallel_workers exceeds the max thread numbers.

  • ValueError – If shard_id is not in range of [0, num_shards ).

Tutorial Examples:

Examples

>>> import mindspore.dataset as ds
>>> usps_dataset_dir = "/path/to/usps_dataset_directory"
>>>
>>> # Read 3 samples from USPS dataset
>>> dataset = ds.USPSDataset(dataset_dir=usps_dataset_dir, num_samples=3)

About USPS dataset:

USPS is a digit dataset automatically scanned from envelopes by the U.S. Postal Service containing a total of 9,298 16×16 pixel grayscale samples. The images are centered, normalized and show a broad range of font styles.

Here is the original USPS dataset structure. You can download and unzip the dataset files into this directory structure and read by MindSpore’s API.

.
└── usps_dataset_dir
     ├── usps
     ├── usps.t

Citation:

@article{hull1994database,
  title={A database for handwritten text recognition research},
  author={Hull, Jonathan J.},
  journal={IEEE Transactions on pattern analysis and machine intelligence},
  volume={16},
  number={5},
  pages={550--554},
  year={1994},
  publisher={IEEE}
}

Pre-processing Operation

mindspore.dataset.Dataset.apply

Apply a function in this dataset.

mindspore.dataset.Dataset.concat

Concatenate the dataset objects in the input list.

mindspore.dataset.Dataset.filter

Filter dataset by prediction.

mindspore.dataset.Dataset.flat_map

Map func to each row in dataset and flatten the result.

mindspore.dataset.Dataset.map

Apply each operation in operations to this dataset.

mindspore.dataset.Dataset.project

The specified columns will be selected from the dataset and passed into the pipeline with the order specified.

mindspore.dataset.Dataset.rename

Rename the columns in input datasets.

mindspore.dataset.Dataset.repeat

Repeat this dataset count times.

mindspore.dataset.Dataset.reset

Reset the dataset for next epoch.

mindspore.dataset.Dataset.save

Save the dynamic data processed by the dataset pipeline in common dataset format.

mindspore.dataset.Dataset.shuffle

Shuffle the dataset by creating a cache with the size of buffer_size .

mindspore.dataset.Dataset.skip

Skip the first N elements of this dataset.

mindspore.dataset.Dataset.split

Split the dataset into smaller, non-overlapping datasets.

mindspore.dataset.Dataset.take

Take the first specified number of samples from the dataset.

mindspore.dataset.Dataset.zip

Zip the datasets in the sense of input tuple of datasets.

Batch

mindspore.dataset.Dataset.batch

Combine batch_size number of consecutive rows into batch which apply per_batch_map to the samples first.

mindspore.dataset.Dataset.bucket_batch_by_length

Bucket elements according to their lengths.

mindspore.dataset.Dataset.padded_batch

Combine batch_size number of consecutive rows into batch which apply pad_info to the samples first.

Iterator

mindspore.dataset.Dataset.create_dict_iterator

Create an iterator over the dataset.

mindspore.dataset.Dataset.create_tuple_iterator

Create an iterator over the dataset.

Attribute

mindspore.dataset.Dataset.get_batch_size

Return the size of batch.

mindspore.dataset.Dataset.get_class_indexing

Get the mapping dictionary from category names to category indexes.

mindspore.dataset.Dataset.get_col_names

Return the names of the columns in dataset.

mindspore.dataset.Dataset.get_dataset_size

Return the number of batches in an epoch.

mindspore.dataset.Dataset.get_repeat_count

Get the replication times in RepeatDataset.

mindspore.dataset.Dataset.input_indexs

Get the column index, which represents the corresponding relationship between the data column order and the network when using the sink mode.

mindspore.dataset.Dataset.num_classes

Get the number of classes in a dataset.

mindspore.dataset.Dataset.output_shapes

Get the shapes of output data.

mindspore.dataset.Dataset.output_types

Get the types of output data.

Apply Sampler

mindspore.dataset.MappableDataset.add_sampler

Add a child sampler for the current dataset.

mindspore.dataset.MappableDataset.use_sampler

Replace the last child sampler of the current dataset, remaining the parent sampler unchanged.

Others

mindspore.dataset.Dataset.sync_update

Release a blocking condition and trigger callback with given data.

mindspore.dataset.Dataset.sync_wait

Add a blocking condition to the input Dataset and a synchronize action will be applied.

mindspore.dataset.Dataset.to_json

Serialize a pipeline into JSON string and dump into file if filename is provided.