Source code for mindspore.train.amp

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Auto mixed precision."""
from __future__ import absolute_import
import inspect
import types

import mindspore as ms
from mindspore import nn
from mindspore import _checkparam as validator
from mindspore.common import dtype as mstype
from mindspore.nn.wrap.cell_wrapper import _TrainGradAccuStepCell
from mindspore.nn.wrap.loss_scale import _TrainGradAccuWithLossScaleCell
from mindspore.ops import functional as F
from mindspore.parallel._utils import _get_pipeline_stages
from mindspore.train.loss_scale_manager import DynamicLossScaleManager, LossScaleManager
from mindspore import boost, context
from mindspore.ops import operations as P
from mindspore.ops import Primitive
from mindspore import log as logger


AMP_WHITE_LIST = [
    nn.Conv1d,
    nn.Conv2d,
    nn.Conv3d,
    nn.Conv1dTranspose,
    nn.Conv2dTranspose,
    nn.Conv3dTranspose,
    nn.Dense,
    nn.LSTMCell,
    nn.RNNCell,
    nn.GRUCell,
    P.Conv2D,
    P.Conv3D,
    P.Conv2DTranspose,
    P.Conv3DTranspose,
    P.Conv2DBackpropInput,
    P.MatMul,
    P.BatchMatMul,
    P.PReLU,
    P.ReLU,
    P.Ger
]


AMP_BLACK_LIST = [
    nn.BatchNorm1d,
    nn.BatchNorm2d,
    nn.BatchNorm3d,
    nn.LayerNorm
]

# Primitives in inner amp black list will not be converted in O2/O3
_INNER_AMP_BLACK_LIST = []

MS_AMP_BY_REWRITE = False


def amp_cast(value, dtype):
    """This function is used to insert cast operators for tensors during auto mixed precision."""
    if isinstance(value, ms.Tensor) and value.dtype in mstype.float_type:
        return P.Cast()(value, dtype)
    return value

_amp_cast_op = amp_cast


class _OutputTo16(nn.Cell):
    """Wrap cell for amp. Cast network output back to float16."""
    def __init__(self, backbone, dtype=mstype.float16):
        super(_OutputTo16, self).__init__(auto_prefix=False)
        self._backbone = backbone
        self.dtype = dtype
        self._get_attr_from_cell(backbone)

    def construct(self, *args, **kwargs):
        return F.cast(self._backbone(*args, **kwargs), self.dtype)


class _OutputTo32(nn.Cell):
    """Wrap loss for amp. Cast network output back to float32."""
    def __init__(self, backbone):
        super(_OutputTo32, self).__init__(auto_prefix=False)
        self._backbone = backbone
        self._get_attr_from_cell(backbone)

    def construct(self, *args, **kwargs):
        out = self._backbone(*args, **kwargs)
        return F.mixed_precision_cast(mstype.float32, out)


def _operator_need_cast(node, force_cast: bool, white_list=None, black_list=None) -> bool:
    """
    Check whether current node is a operator that need to be casted. Follow conditions need to be satisfied:
        1) Type of node is CallPrimitive and type of instance is Primitive
        2) Type of instance is not P.Cast
        3) force_cast is True, which means one of upper layer cells is under casting
        4) white_list exist and type of node is in white_list
        5) black_list exist and type of node is in not black_list
    """
    if node.get_node_type() != ms.rewrite.NodeType.CallPrimitive:
        return False
    if not inspect.isclass(node.get_instance_type()):
        return False
    if not issubclass(node.get_instance_type(), Primitive):
        return False
    if issubclass(node.get_instance_type(), P.Cast):
        return False
    if node.get_instance_type() in _INNER_AMP_BLACK_LIST:
        return False
    if force_cast:
        return True
    if white_list is not None and node.get_instance_type() in white_list:
        return True
    if black_list is not None and node.get_instance_type() not in black_list:
        return True
    return False


def _precision_set_by_user(cell_inst: nn.Cell) -> bool:
    """Check whether cell precision is set by user."""
    for flag in ["fp32", "fp16", "bf16"]:
        if hasattr(cell_inst, flag) and getattr(cell_inst, flag):
            return True
    return False


def _net_need_cast(node, force_cast: bool, white_list=None, black_list=None) -> bool:
    """
    Check whether current node is type of tree whose network needs to be casted. Follow conditions need to
    be satisfied:
        1) Type of node is Tree and type of instance is Cell
        2) Cell.to_float(xxx) is not set by user
        3) force_cast is True, which means one of upper layer networks is under casting
        4) white_list exist and type of node is in white_list
        5) black_list exist and type of node is in not black_list
    """
    if node.get_node_type() != ms.rewrite.NodeType.Tree:
        return False
    if not inspect.isclass(node.get_instance_type()):
        return False
    if not issubclass(node.get_instance_type(), nn.Cell):
        return False
    if node.get_instance_type() in _INNER_AMP_BLACK_LIST:
        return False
    if _precision_set_by_user(node.get_instance()):
        return False
    if force_cast:
        return True
    if white_list is not None and node.get_instance_type() in white_list:
        return True
    if black_list is not None and node.get_instance_type() not in black_list:
        return True
    return False


def _insert_cast_for_operator(node, dtype):
    """insert cast pair for node."""
    dtype_str = "bfloat16" if dtype == mstype.bfloat16 else "float16"
    stree = node.get_symbol_tree()
    # insert cast fp16/bf16 for inputs of node
    for idx, arg in enumerate(node.get_args()):
        if arg.type != ms.rewrite.ValueType.NamingValue:
            continue
        incast_args = ms.rewrite.ScopedValue.create_name_values([arg.value, dtype_str], [arg.scope, "mindspore"])
        arg_providers = node.get_arg_providers()
        if not arg_providers or idx not in arg_providers or \
            len(arg_providers[idx][0].get_target_users(arg_providers[idx][1])) > 1:
            # create new target names when argument is used by other node
            incast_targets = [stree.unique_name(f"{arg.value}_var")]
        else:
            incast_targets = ms.rewrite.ScopedValue.create_name_values([arg.value], [arg.scope])
        incast_node = ms.rewrite.Node.create_call_function(_amp_cast_op, targets=incast_targets, args=incast_args)
        stree.insert(stree.before(node), incast_node)
        node.set_arg_by_node(idx, incast_node)
    # insert cast fp32 for outputs of node
    for _, target in enumerate(node.get_targets()):
        if target.type != ms.rewrite.ValueType.NamingValue:
            continue
        outcast_args = ms.rewrite.ScopedValue.create_name_values([target.value, "float32"],
                                                                 [target.scope, "mindspore"])
        outcast_targets = ms.rewrite.ScopedValue.create_name_values([target.value], [target.scope])
        outcast_node = ms.rewrite.Node.create_call_function(_amp_cast_op, targets=outcast_targets, args=outcast_args)
        stree.insert(stree.after(node), outcast_node)


def _insert_cast_for_operators(stree, dtype, force_cast, *, white_list=None, black_list=None):
    """insert cast for operators not in black_list."""
    # get all nodes of stree exclude nodes in subtree.
    all_nodes = stree.all_nodes(False)
    for node in all_nodes:
        if not node.get_targets():
            continue
        if _operator_need_cast(node, force_cast, white_list, black_list):
            _insert_cast_for_operator(node, dtype)
        elif node.get_node_type() == ms.rewrite.NodeType.Tree:
            force_cast_ = force_cast or _net_need_cast(node, force_cast, white_list, black_list)
            if not _precision_set_by_user(node.get_instance()):
                subtree = node.get_sub_tree()
                _insert_cast_for_operators(subtree, dtype, force_cast_, white_list=white_list, black_list=black_list)


def _need_removed_cast_pair(node, dtype):
    """check whether the cast pairs should be removed."""
    dtype_str = "bfloat16" if dtype == mstype.bfloat16 else "float16"
    cast_dtypes = ms.rewrite.ScopedValue.create_name_values([dtype_str, "float32"], ["mindspore", "mindspore"])
    cast_dtype_f16 = cast_dtypes[0]
    cast_dtype_f32 = cast_dtypes[1]
    # current node should be cast fp32
    if node.get_instance_type() != _amp_cast_op:
        return False
    node_cast_type = node.get_args()[1]
    if node_cast_type != cast_dtype_f32:
        return False
    # all user nodes should be cast fp16/bf16
    if not node.get_users():
        return False
    all_nodes = [ms.rewrite.Node(n) for n in node.get_handler().get_node_manager().nodes()]
    for user in node.get_users():
        # If ControlFlow node(e.g. if, for, while) exists between current node and user node,
        # cast pair should not be removed.
        middle_nodes = all_nodes[all_nodes.index(node): all_nodes.index(user)]
        if any([n.get_node_type() == ms.rewrite.NodeType.ControlFlow for n in middle_nodes]):
            return False
        if user.get_instance_type() != _amp_cast_op:
            return False
        user_cast_type = user.get_args()[1]
        if user_cast_type != cast_dtype_f16:
            return False
        # cast pair detected, check next user
        continue
    return True


def _remove_duplicated_cast(stree, dtype):
    """remove the duplicated cast operators."""
    all_nodes = list(stree.nodes(all_nodes=True))
    for node in all_nodes:
        if _need_removed_cast_pair(node, dtype):
            incast_nodes = node.get_users()
            # remove cast fp16/bf16 nodes
            for incast_node in incast_nodes:
                # get_target_users() return {target0: [(user0, arg_idx), ...], ...}
                target_users = list(incast_node.get_target_users().values())
                if not target_users or not target_users[0]:
                    continue
                for user_node, arg_idx in target_users[0]:
                    user_node.set_arg(arg_idx, incast_node.get_args()[0])
                stree.erase(incast_node)
            # remove the cast fp32 node
            stree.erase(node)


def _auto_mixed_precision_rewrite(network, dtype, *, white_list=None, black_list=None):
    """Implement auto mixed precision by rewrite"""
    if (white_list is None and black_list is None) or (white_list is not None and black_list is not None):
        raise ValueError("For _auto_mixed_precision_rewrite, one of white_list and black_list must be provided.")
    # enable rewrite configs for amp
    ms.rewrite.common.namespace._ms_cells_to_subtree = True
    ms.rewrite.parsers.assign_parser.AssignParser._share_one_implementation = True
    # insert casts by rewrite
    stree = ms.rewrite.SymbolTree.create(network)
    _insert_cast_for_operators(stree, dtype, False, white_list=white_list, black_list=black_list)
    _remove_duplicated_cast(stree, dtype)
    new_net = stree.get_network()
    # disable rewrite configs
    ms.rewrite.parsers.assign_parser.AssignParser._share_one_implementation = False
    ms.rewrite.common.namespace._ms_cells_to_subtree = False
    ms.rewrite.common.config.clear_caches()
    return new_net


def _auto_black_list(network, black_list, dtype):
    """process the black list of network."""
    network.to_float(dtype)
    cells = network.name_cells()
    change = False
    for name in cells:
        subcell = cells[name]
        if subcell == network:
            continue
        if isinstance(subcell, tuple(black_list)):
            network._cells[name] = _OutputTo16(subcell.to_float(mstype.float32), dtype)
            change = True
        else:
            _auto_black_list(subcell, black_list, dtype)
    if isinstance(network, nn.SequentialCell) and change:
        network.cell_list = list(network.cells())
    return network


[docs]def auto_mixed_precision(network, amp_level="O0", dtype=mstype.float16): """ Returns a network processed with auto mixed precision. This interface will automatically perform mixed-precision processing on the input network, and the cells and operators in the processed network will add precision conversion operations to calculate with lower precision: ``mstype.float16`` or ``mstype.bfloat16`` . Inputs and parameters of cells and operators are converted to lower precision float, and calculation results are converted back to full precision float, i.e. ``mstype.float32`` . The framework has a set of built-in blacklists and whitelists, and the `amp_level` determines which cells and operators are specifically converted. The current built-in whitelist contents are: [:class:`mindspore.nn.Conv1d`, :class:`mindspore.nn.Conv2d`, :class:`mindspore.nn.Conv3d`, :class:`mindspore.nn.Conv1dTranspose`, :class:`mindspore.nn.Conv2dTranspose`, :class:`mindspore.nn.Conv3dTranspose`, :class:`mindspore.nn.Dense`, :class:`mindspore.nn.LSTMCell`, :class:`mindspore.nn.RNNCell`, :class:`mindspore.nn.GRUCell`, :class:`mindspore.ops.Conv2D`, :class:`mindspore.ops.Conv3D`, :class:`mindspore.ops.Conv2DTranspose`, :class:`mindspore.ops.Conv3DTranspose`, :class:`mindspore.ops.MatMul`, :class:`mindspore.ops.BatchMatMul`, :class:`mindspore.ops.PReLU`, :class:`mindspore.ops.ReLU`, :class:`mindspore.ops.Ger`] The current built-in blacklist contents are: [:class:`mindspore.nn.BatchNorm1d`, :class:`mindspore.nn.BatchNorm2d`, :class:`mindspore.nn.BatchNorm3d`, :class:`mindspore.nn.LayerNorm`] For details on automatic mixed precision, refer to `Automatic Mix Precision <https://www.mindspore.cn/tutorials/en/r2.3.0rc2/advanced/mixed_precision.html>`_ . Note: - Repeatedly calling mixed-precision interfaces, such as `custom_mixed_precision` and `auto_mixed_precision`, can result in a larger network hierarchy and slower performance. - If interfaces like `Model` and `build_train_network` is used to train the network which is converted by mixed-precision interfaces such as `custom_mixed_precision` and `auto_mixed_precision`, `amp_level` need to be configured to ``O0`` to avoid the duplicated accuracy conversion. Args: network (Cell): Definition of the network. amp_level (str): Supports ["O0", "O1", "O2", "O3"]. Default: ``"O0"`` . - "O0": Do not change. - "O1": Convert cells and operators in whitelist to lower precision operations, and keep full precision operations for the rest. - "O2": Keep full precision operations for cells and operators in blacklist, and convert the rest to lower precision operations. - "O3": Cast network to lower precision. dtype (Type): The type used in lower precision calculations, can be ``mstype.float16`` or ``mstype.bfloat16`` , default: ``mstype.float16`` . Raises: TypeError: If `network` is not a Cell. ValueError: If `dtype` is not one of ``mstype.float16`` , ``mstype.bfloat16`` . ValueError: If `amp_level` is not within the supported range. Examples: >>> from mindspore import amp >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/r2.3.0rc2/docs/mindspore/code/lenet.py >>> network = LeNet5() >>> amp_level = "O1" >>> net = amp.auto_mixed_precision(network, amp_level) """ if not isinstance(network, nn.Cell): raise TypeError("The network type should be Cell.") if dtype not in (mstype.float16, mstype.bfloat16): raise ValueError(f"The dtype should be one of (mstype.float16, mstype.bfloat16), but got {dtype}.") if amp_level == "O0": return network # Return network if the same amp level has already been configurated if getattr(network, "_amp_level") in ("O1", "O2", "O3"): logger.warning(f"The network's auto mixed-precision level is adjusted from {getattr(network, '_amp_level')} " f"to {amp_level}, and repeated calls to mixed-precision interfaces can cause performance " f"degradation.") if amp_level == "O1": network = _auto_mixed_precision_rewrite(network, dtype, white_list=AMP_WHITE_LIST) elif amp_level == "O2": if MS_AMP_BY_REWRITE: network = _auto_mixed_precision_rewrite(network, dtype, black_list=AMP_BLACK_LIST) else: network = _auto_black_list(network, AMP_BLACK_LIST, dtype) network = _OutputTo32(network) elif amp_level == "O3": if MS_AMP_BY_REWRITE: network = _auto_mixed_precision_rewrite(network, dtype, black_list=[]) else: network.to_float(dtype) network = _OutputTo32(network) else: raise ValueError("The amp level {} is not supported".format(amp_level)) setattr(network, "_amp_level", amp_level) return network
def _do_keep_batchnorm_fp32(network): """Do keep batchnorm fp32.""" cells = network.name_cells() change = False for name in cells: subcell = cells[name] if subcell == network: continue elif isinstance(subcell, nn.Cell) and isinstance(subcell, tuple(AMP_BLACK_LIST)): network._cells[name] = _OutputTo16(subcell.to_float(mstype.float32)) change = True else: _do_keep_batchnorm_fp32(subcell) if isinstance(network, nn.SequentialCell) and change: network.cell_list = list(network.cells()) _config_level = { "O0": { "keep_batchnorm_fp32": False, "cast_model_type": mstype.float32, "loss_scale_manager": None}, "O1": { "keep_batchnorm_fp32": False, "cast_model_type": mstype.float32, "loss_scale_manager": None}, "O2": { "keep_batchnorm_fp32": True, "cast_model_type": mstype.float16, "loss_scale_manager": DynamicLossScaleManager()}, "O3": { "keep_batchnorm_fp32": False, "cast_model_type": mstype.float16, "loss_scale_manager": None}} def _check_kwargs(key_words): """Check kwargs.""" for arg in key_words: if arg not in ['cast_model_type', 'keep_batchnorm_fp32', 'loss_scale_manager']: raise ValueError(f"Unsupported arg '{arg}'") if 'cast_model_type' in key_words: validator.check_type_name('cast_model_type', key_words['cast_model_type'], [mstype.float16, mstype.float32], None) if 'keep_batchnorm_fp32' in key_words: validator.check_value_type('keep_batchnorm_fp32', key_words['keep_batchnorm_fp32'], bool) if 'loss_scale_manager' in key_words: loss_scale_manager = key_words['loss_scale_manager'] if loss_scale_manager: validator.check_value_type('loss_scale_manager', loss_scale_manager, [LossScaleManager, boost.GroupLossScaleManager]) def _check_level(level, boost_level): """Check level.""" if not isinstance(level, str): raise TypeError("The argument `level` must be a string in ['O0', 'O1', 'O2', 'O3', 'auto'], \ but got type {}.".format(type(level))) validator.check('level', level, "", ['O0', 'O1', 'O2', 'O3', 'auto'], validator.IN) validator.check('boost_level', boost_level, "", ['O0', 'O1', 'O2'], validator.IN) if level == "auto": device_target = context.get_context('device_target') if device_target == "GPU": level = "O2" elif device_target == "Ascend": level = "O3" else: raise ValueError("Level `auto` only support when `device_target` is GPU or Ascend.") enable_boost = False if boost_level in ["O1", "O2"]: enable_boost = True return level, enable_boost def _add_loss_network(network, loss_fn, cast_model_type): """Add loss network.""" class WithLossCell(nn.Cell): """Wrap loss for amp. Cast network output back to float32.""" def __init__(self, backbone, loss_fn): super(WithLossCell, self).__init__(auto_prefix=False) self._backbone = backbone self._loss_fn = loss_fn self._get_attr_from_cell(backbone) def construct(self, data, label): out = self._backbone(data) label = F.mixed_precision_cast(mstype.float32, label) return self._loss_fn(F.mixed_precision_cast(mstype.float32, out), label) validator.check_value_type('loss_fn', loss_fn, nn.Cell) if cast_model_type == mstype.float16: network = WithLossCell(network, loss_fn) else: network = nn.WithLossCell(network, loss_fn) return network def _is_grad_accumulation(mcell): if mcell.cls_name == "GradAccumulationCell": return True for cell in mcell.cells(): if _is_grad_accumulation(cell): return True return False def _auto_mixed_precision_process(network, config, level): """Auto mixed precision process.""" if MS_AMP_BY_REWRITE: if config["cast_model_type"] == mstype.float16 or level == "O2": level = "O2" if config["keep_batchnorm_fp32"] else "O3" elif config["cast_model_type"] == mstype.float32 and level in ("O2", "O3"): # cast_model_type set by kwargs level = "O0" network = auto_mixed_precision(network, level) else: if config["cast_model_type"] == mstype.float16: network.to_float(mstype.float16) if config["keep_batchnorm_fp32"]: _do_keep_batchnorm_fp32(network) elif not config["keep_batchnorm_fp32"] and level == "O2": network.to_float(mstype.float16) elif config["cast_model_type"] == mstype.float32 and level in ("O2", "O3"): pass else: network = auto_mixed_precision(network, level) return network
[docs]def build_train_network(network, optimizer, loss_fn=None, level='O0', boost_level='O0', **kwargs): """ Build the mixed precision training cell automatically. Note: - After using `custom_mixed_precision` or `auto_mixed_precision` for precision conversion, it is not supported to perform the precision conversion again. If `build_train_network` is used to train a converted network, `level` need to be configured to ``O0`` to avoid the duplicated accuracy conversion. Args: network (Cell): Definition of the network. optimizer (:class:`mindspore.nn.Optimizer`): Define the optimizer to update the Parameter. loss_fn (Union[None, Cell]): Define the loss function. If None, the `network` should have the loss inside. Default: ``None`` . level (str): Supports ['O0', 'O1', 'O2', 'O3', 'auto']. Default: ``'O0'`` . - 'O0': Do not change. - 'O1': Cast the operators in white_list to float16, the remaining operators are kept in float32. The operators in the whitelist: [Conv1d, Conv2d, Conv3d, Conv1dTranspose, Conv2dTranspose, Conv3dTranspose, Dense, LSTMCell, RNNCell, GRUCell, MatMul, BatchMatMul, PReLU, ReLU, Ger]. - 'O2': Cast network to float16, keep `mindspore.nn.BatchNorm` series interface, :class:`mindspore.nn.LayerNorm` and `loss_fn` (if set) run in float32, using dynamic loss scale. - 'O3': Cast network to float16, with additional property `keep_batchnorm_fp32=False` . - 'auto': Set to level to recommended level in different devices. Set level to 'O2' on GPU, Set level to 'O3' Ascend. The recommended level is chosen by the export experience, not applicable to all scenarios. User should specify the level for special network. 'O2' is recommended on GPU, 'O3' is recommended on Ascend. Property of `keep_batchnorm_fp32`, `cast_model_type` and `loss_scale_manager` determined by `level` setting may be overwritten by settings in `kwargs`. boost_level (str): Option for argument `level` in `mindspore.boost` , level for boost mode training. Supports ['O0', 'O1', 'O2']. Default: ``'O0'`` . - 'O0': Do not change. - 'O1': Enable the boost mode, the performance is improved by about 20%, and the accuracy is the same as the original accuracy. - 'O2': Enable the boost mode, the performance is improved by about 30%, and the accuracy is reduced by less than 3%. If 'O1' or 'O2' mode is set, the boost related library will take effect automatically. cast_model_type (:class:`mindspore.dtype`): Supports `mstype.float16` or `mstype.float32` . If set, the network will be casted to `cast_model_type` ( `mstype.float16` or `mstype.float32` ), but not to be casted to the type determined by `level` setting. keep_batchnorm_fp32 (bool): Keep Batchnorm run in `float32` when the network is set to cast to `float16` . If set, the `level` setting will take no effect on this property. loss_scale_manager (Union[None, LossScaleManager]): If not None, must be subclass of :class:`mindspore.amp.LossScaleManager` for scaling the loss. If set, the `level` setting will take no effect on this property. Raises: ValueError: If device is CPU, property `loss_scale_manager` is not `None` or :class:`mindspore.amp.FixedLossScaleManager` (with property `drop_overflow_update=False` ). Examples: >>> from mindspore import amp, nn >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/r2.3.0rc2/docs/mindspore/code/lenet.py >>> network = LeNet5() >>> net_loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean") >>> net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.01, momentum=0.9) >>> amp_level="O3" >>> net = amp.build_train_network(network, net_opt, net_loss, amp_level) """ validator.check_value_type('optimizer', optimizer, (nn.Optimizer, boost.FreezeOpt, nn.AdaSumByGradWrapCell, nn.AdaSumByDeltaWeightWrapCell)) level, enable_boost = _check_level(level, boost_level) _check_kwargs(kwargs) config = dict(_config_level.get(level), **kwargs) network = _auto_mixed_precision_process(network, config, level) if loss_fn: network = _add_loss_network(network, loss_fn, config["cast_model_type"]) loss_scale = None if config["loss_scale_manager"] is not None: loss_scale_manager = config["loss_scale_manager"] loss_scale = loss_scale_manager.get_loss_scale() update_cell = loss_scale_manager.get_update_cell() if update_cell is not None: # only cpu not support `TrainOneStepWithLossScaleCell` for control flow. if not context.get_context("enable_ge") and context.get_context("device_target") == "CPU": raise ValueError("Only `loss_scale_manager=None` or " "`loss_scale_manager=FixedLossScaleManager(drop_overflow_update=False)`" "are supported on device `CPU`. ") if _get_pipeline_stages() > 1 or _is_grad_accumulation(network): network = _TrainGradAccuWithLossScaleCell(network, optimizer, scale_sense=update_cell).set_train() elif enable_boost: network = boost.BoostTrainOneStepWithLossScaleCell(network, optimizer, scale_sense=update_cell).set_train() else: network = nn.TrainOneStepWithLossScaleCell(network, optimizer, scale_sense=update_cell).set_train() return network if _get_pipeline_stages() > 1 or _is_grad_accumulation(network): network = _TrainGradAccuStepCell(network, optimizer).set_train() elif enable_boost: network = boost.BoostTrainOneStepCell(network, optimizer, loss_scale).set_train() else: network = nn.TrainOneStepCell(network, optimizer, loss_scale).set_train() return network
[docs]def get_white_list(): """ Provide a copy of internal white list used by auto mixed precision. The current built-in whitelist contents are: [:class:`mindspore.nn.Conv1d`, :class:`mindspore.nn.Conv2d`, :class:`mindspore.nn.Conv3d`, :class:`mindspore.nn.Conv1dTranspose`, :class:`mindspore.nn.Conv2dTranspose`, :class:`mindspore.nn.Conv3dTranspose`, :class:`mindspore.nn.Dense`, :class:`mindspore.nn.LSTMCell`, :class:`mindspore.nn.RNNCell`, :class:`mindspore.nn.GRUCell`, :class:`mindspore.ops.Conv2D`, :class:`mindspore.ops.Conv3D`, :class:`mindspore.ops.Conv2DTranspose`, :class:`mindspore.ops.Conv3DTranspose`, :class:`mindspore.ops.MatMul`, :class:`mindspore.ops.BatchMatMul`, :class:`mindspore.ops.PReLU`, :class:`mindspore.ops.ReLU`, :class:`mindspore.ops.Ger`] Returns: list, A copy of internal white list. Examples: >>> from mindspore import amp >>> white_list = amp.get_white_list() >>> print(white_list) [<class 'mindspore.nn.layer.conv.Conv1d'>, <class 'mindspore.nn.layer.conv.Conv2d'>, <class 'mindspore.nn.layer.conv.Conv3d'>, <class 'mindspore.nn.layer.conv.Conv1dTranspose'>, <class 'mindspore.nn.layer.conv.Conv2dTranspose'>, <class 'mindspore.nn.layer.conv.Conv3dTranspose'>, <class 'mindspore.nn.layer.basic.Dense'>, <class 'mindspore.nn.layer.rnn_cells.LSTMCell'>, <class 'mindspore.nn.layer.rnn_cells.RNNCell'>, <class 'mindspore.nn.layer.rnn_cells.GRUCell'>, <class 'mindspore.ops.operations.nn_ops.Conv2D'>, <class 'mindspore.ops.operations.nn_ops.Conv3D'>, <class 'mindspore.ops.operations.nn_ops.Conv2DTranspose'>, <class 'mindspore.ops.operations.nn_ops.Conv3DTranspose'>, <class 'mindspore.ops.operations.nn_ops.Conv2DBackpropInput'>, <class 'mindspore.ops.operations.math_ops.MatMul'>, <class 'mindspore.ops.operations.math_ops.BatchMatMul'>, <class 'mindspore.ops.operations.nn_ops.PReLU'>, <class 'mindspore.ops.operations.nn_ops.ReLU'>, <class 'mindspore.ops.operations.math_ops.Ger'>] """ white_list = AMP_WHITE_LIST.copy() return white_list
[docs]def get_black_list(): """ Provide a copy of internal black list used by auto mixed precision. The current built-in blacklist contents are: [:class:`mindspore.nn.BatchNorm1d`, :class:`mindspore.nn.BatchNorm2d`, :class:`mindspore.nn.BatchNorm3d`, :class:`mindspore.nn.LayerNorm`] Returns: list, A copy of internal black list. Examples: >>> from mindspore import amp >>> black_list = amp.get_black_list() >>> print(black_list) [<class 'mindspore.nn.layer.normalization.BatchNorm1d'>, <class 'mindspore.nn.layer.normalization.BatchNorm2d'>, <class 'mindspore.nn.layer.normalization.BatchNorm3d'>, <class 'mindspore.nn.layer.normalization.LayerNorm'>] """ black_list = AMP_BLACK_LIST.copy() return black_list
[docs]def custom_mixed_precision(network, *, white_list=None, black_list=None, dtype=mstype.float16): """ Custom mixed precision by setting whitelist or blacklist. When the `white_list` is provided, primitives and cells in `white_list` will perform the precision conversion. When the `black_list` is provided, cells that are not in `black_list` will perform the pereision conversion. Only one of `white_list` and `black_list` should be provided. Note: - Repeatedly calling mixed-precision interfaces, such as `custom_mixed_precision` and `auto_mixed_precision`, can result in a larger network hierarchy and slower performance. - If interfaces like `Model` and `build_train_network` is used to train the network which is converted by mixed-precision interfaces such as `custom_mixed_precision` and `auto_mixed_precision`, `amp_level` need to be configured to ``O0`` to avoid the duplicated accuracy conversion. - Primitives for blacklist is not support yet. Args: network (Cell): Definition of the network. white_list (list[Primitive, Cell], optional): White list of custom mixed precision. Defaults: ``None`` , means white list is not used. black_list (list[Cell], optional): Black list of custom mixed precision. Defaults: ``None`` , means black list is not used. dtype (Type): The type used in lower precision calculations, can be ``mstype.float16`` or ``mstype.bfloat16`` , default: ``mstype.float16`` . Returns: network (Cell), A network supporting mixed precision. Raises: TypeError: The network type is not Cell. ValueError: Neither `white_list` nor `black_list` is provided. ValueError: If `dtype` is not one of ``mstype.float16`` , ``mstype.bfloat16`` . ValueError: Both `white_list` and `black_list` are provided. Examples: >>> from mindspore import amp, nn >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/r2.3.0rc2/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> custom_white_list = amp.get_white_list() >>> custom_white_list.append(nn.Flatten) >>> net = amp.custom_mixed_precision(net, white_list=custom_white_list) """ if not isinstance(network, nn.Cell): raise TypeError("The network type should be Cell.") if white_list is None and black_list is None: raise ValueError("For custom_mixed_precision, one of white_list and black_list must be provided.") if white_list is not None and black_list is not None: raise ValueError("For custom_mixed_precision, the white_list or black_list cannot be provided " "at the same time, please provide one or the other.") if dtype not in (mstype.float16, mstype.bfloat16): raise ValueError(f"The dtype should be one of (mstype.float16, mstype.bfloat16), but got {dtype}.") if white_list is not None: _list_check(white_list, "white_list") network = _auto_mixed_precision_rewrite(network, dtype, white_list=white_list) else: _list_check(black_list, "black_list") if MS_AMP_BY_REWRITE: network = _auto_mixed_precision_rewrite(network, dtype, black_list=black_list) else: network = _auto_black_list(network, black_list, dtype) network = _OutputTo32(network) return network
def _list_check(custom_list: list, list_name: str): """ check whether custom list is valid Raises: TypeError: The type of custom_list is not list. TypeError: The element in custom_list is not a class. TypeError: The subclass of element in custom_list is not one of ['Cell', 'Primitive']. """ if not isinstance(custom_list, list): raise TypeError(f"The type of {list_name} should be list, but got {type(custom_list)}") for elem in custom_list: if not isinstance(elem, type): raise TypeError(f"The element in {list_name} should be a class, but got {elem}") if list_name == "white_list" and not issubclass(elem, nn.Cell) and not issubclass(elem, Primitive): raise TypeError(f"The subclass of element in {list_name} should be one of 'Cell' and 'Primitive', " f"but got {elem}") if list_name == "black_list" and not issubclass(elem, nn.Cell): raise TypeError(f"The subclass of element in {list_name} should be one of 'Cell', but got {elem}") if list_name == 'black_list': for elem in AMP_BLACK_LIST: if elem not in custom_list: logger.warning(f"{elem} is removed from internal black list.") def _config_amp(*, enable_rewrite: bool = None, cast_op: types.FunctionType = None): # pylint: disable=unused-variable """Configure auto mixed precision.""" global MS_AMP_BY_REWRITE global _amp_cast_op if enable_rewrite is not None: MS_AMP_BY_REWRITE = enable_rewrite if cast_op is not None: _amp_cast_op = cast_op