Source code for mindspore.scipy.linalg

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Linear algebra submodule"""
from __future__ import absolute_import
from .ops import LU, SolveTriangular
from .utils import _nd_transpose, _value_check, _type_check, _dtype_check, _mstype_check, _square_check, _solve_check
from .utils_const import _raise_value_error
from .. import numpy as mnp
from .. import ops
from ..common import dtype as mstype
from ..ops.operations.math_ops import Cholesky
from ..ops.operations.linalg_ops import Eigh
from ..ops import functional as F
from ..ops import operations as P

__all__ = ['block_diag', 'inv', 'cho_factor', 'cholesky',
           'cho_solve', 'eigh', 'lu_factor', 'lu', 'solve_triangular']


[docs]def solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False, debug=None, check_finite=True): """ Solve the linear system :math:`a x = b` for `x`, Assuming `a` is a triangular matrix. Note: - `solve_triangular` is currently only used in `mindscience` scientific computing scenarios and dose not support other usage scenarios. - `solve_triangular` is not supported on Windows platform yet. Args: a (Tensor): A triangular matrix of shape :math:`(*, M, M)` where :math:`*` is zero or more batch dimensions. b (Tensor): A Tensor of shape :math:`(*, M)` or :math:`(*, M, N)`. Right-hand side matrix in :math:`a x = b`. trans (Union[int, str], optional): Type of system to solve. Default: ``0``. ======== ========= trans system ======== ========= 0 or 'N' a x = b 1 or 'T' a^T x = b 2 or 'C' a^H x = b ======== ========= lower (bool, optional): Use only data contained in the lower triangle of `a`. Default: ``False``. unit_diagonal (bool, optional): If ``True``, diagonal elements of :math:`a` are assumed to be 1 and will not be referenced. Default: ``False``. overwrite_b (bool, optional): Not implemented now. Default: ``False``. debug (Any, optional): Not implemented now. Default: ``None``. check_finite (bool, optional): Not implemented now. Default: ``True``. Returns: Tensor of shape :math:`(*, M)` or :math:`(*, M, N)`, which is the solution to the system :math:`a x = b`. Shape of :math:`x` matches :math:`b`. Raises: ValueError: If `a` is less than 2 dimension. ValueError: if `a` is not square matrix. TypeError: If dtype of `a` and `b` are not the same. ValueError: If the shape of `a` and `b` are not matched. ValueError: If `trans` is not in set {0, 1, 2, 'N', 'T', 'C'}. Supported Platforms: ``Ascend`` ``CPU`` Examples: >>> import numpy as onp >>> import mindspore >>> from mindspore import Tensor >>> from mindspore.scipy.linalg import solve_triangular >>> a = Tensor(onp.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]], onp.float32)) >>> b = Tensor(onp.array([3, 1, 3, 4], onp.float32)) >>> x = solve_triangular(a, b, lower=True, unit_diagonal=False, trans='N') >>> print(x) [ 1. -1. 2. 2.] >>> print(a @ x) # Check the result [3. 1. 3. 4.] """ trans_str_to_int = {'N': 0, 'T': 1, 'C': 2} if isinstance(trans, str): trans = trans_str_to_int.get(trans) if trans is None: _raise_value_error( "For SolveTriangular, Augment[trans] must be one of [1, 2, 3,'N', 'T', 'C'].") return ops.auto_generate.solve_triangular(a, b, trans=trans, lower=lower, unit_diagonal=unit_diagonal)
[docs]def block_diag(*arrs): """ Create a block diagonal matrix from provided arrays. Given the list of Tensors `A`, `B`, and `C`, the output will have these Tensors arranged on the diagonal: .. code-block:: [[A, 0, 0], [0, B, 0], [0, 0, C]] Note: `block_diag` is not supported on Windows platform yet. Args: arrs (list): up to 2-D Input Tensors. One or more Tensors, the dimension of Tensors should be 0-D, 1-D or 2-D. Returns: Tensor with `A`, `B`, `C`, ... on the diagonal which has the same dtype as `A`. Raises: ValueError: If there are Tensors with dimensions higher than 2 in all arguments. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as onp >>> from mindspore import Tensor >>> from mindspore.scipy.linalg import block_diag >>> A = Tensor(onp.array([[1, 0], [0, 1]])) >>> B = Tensor(onp.array([[3, 4, 5], [6, 7, 8]])) >>> C = Tensor(onp.array([[7]])) >>> P = Tensor(onp.zeros((2, ), dtype='int32')) >>> print(block_diag(A, B, C)) [[1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 3 4 5 0] [0 0 6 7 8 0] [0 0 0 0 0 7]] >>> print(block_diag(A, P, B, C)) [[1 0 0 0 0 0 0 0] [0 1 0 0 0 0 0 0] [0 0 0 0 0 0 0 0] [0 0 0 0 3 4 5 0] [0 0 0 0 6 7 8 0] [0 0 0 0 0 0 0 7]] """ if not arrs: return mnp.zeros((1, 0)) bad_shapes = [i for i, a in enumerate(arrs) if a.ndim > 2] if bad_shapes: _raise_value_error("Arguments to mindspore.scipy.linalg.block_diag must have at most 2 dimensions.") accum = mnp.atleast_2d(arrs[0]) for arr in arrs[1:]: arr = mnp.atleast_2d(arr) _, c = arr.shape arr = ops.Pad(((0, 0), (accum.shape[-1], 0)))(arr) accum = ops.Pad(((0, 0), (0, c)))(accum) accum = mnp.concatenate([accum, arr], axis=0) return accum
[docs]def inv(a, overwrite_a=False, check_finite=True): """ Compute the inverse of a matrix. Note: - `inv` is not supported on Windows platform yet. - Only float32, float64, int32, int64 are supported Tensor dtypes. - If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64. Args: a (Tensor): Square matrix to be inverted. overwrite_a (bool, optional): Discard data in `a` (may improve performance). Default: ``False`` . check_finite (bool, optional): Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: ``True`` . Returns: Tensor, inverse of the matrix `a`. Raises: LinAlgError: If :math:`a` is singular. ValueError: If :math:`a` is not square, or not 2D. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as onp >>> from mindspore import Tensor >>> import mindspore.numpy as mnp >>> from mindspore.scipy.linalg import inv >>> a = Tensor(onp.array([[1., 2.], [3., 4.]])) >>> print(inv(a)) [[-2. 1. ] [ 1.5 -0.5]] >>> print(mnp.dot(a, inv(a))) [[1.0000000e+00 0.0000000e+00] [8.8817842e-16 1.0000000e+00]] """ func_name = "inv" _type_check(func_name, overwrite_a, bool, 'overwrite_a') _type_check(func_name, check_finite, bool, 'check_finite') _mstype_check(func_name, a, mstype.TensorType) _square_check(func_name, a) _dtype_check(func_name, a, [mstype.int32, mstype.int64, mstype.float32, mstype.float64]) if F.dtype(a) in (mstype.int32, mstype.int64): a = F.cast(a, mstype.float64) matrix_inverse = P.MatrixInverse(adjoint=False) return matrix_inverse(a)
[docs]def cho_factor(a, lower=False, overwrite_a=False, check_finite=True): """ Compute the cholesky decomposition of a matrix, to use in :func:`mindspore.scipy.linalg.cho_solve`. Returns the cholesky decomposition of a Hermitian positive-definite matrix A. Base on the value of `lower`, perform the following decomposition: - when `lower` is True: :math:`A = L L^*` - when `lower` is False: :math:`A = U^* U` :math:`L^*` is a conjugate transpose matrix of :math:`L`. :math:`U^*` is a conjugate transpose matrix of :math:`U`. The return value can be directly used as the first parameter to :func:`mindspore.scipy.linalg.cho_solve`. Note: - `cho_factor` is not supported on Windows platform yet. - Only float32, float64, int32, int64 are supported Tensor dtypes. - If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64. .. warning:: The returned matrix also contains random data in the entries not used by the cholesky decomposition. If you need to zero these entries, use the function `cholesky` instead. Args: a (Tensor): square Matrix of :math:`(M,M)` to be decomposed. lower (bool, optional): Whether to compute the upper or lower triangular cholesky factorization. Default: ``False`` . overwrite_a(bool, optional): Whether to overwrite data in a (may improve performance). Default: ``False`` . in mindspore, this arg does not work right now. check_finite(bool, optional): Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: ``True`` . in mindspore, this arg does not work right now. Returns: - Tensor, matrix whose upper or lower triangle contains the cholesky factor of `a`. Other parts of the matrix contain random data. - bool, flag indicating whether the factor is in the lower or upper triangle Raises: ValueError: If input a tensor is not a square matrix or it's dims not equal to 2D. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as onp >>> from mindspore import Tensor >>> from mindspore.scipy.linalg import cho_factor >>> a = Tensor(onp.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]]).astype(onp.float32)) >>> c, low = cho_factor(a) >>> print(c) [[ 3. 1. 0.33333334 1.6666666 ] [ 3. 2.4494898 1.9051585 -0.2721655 ] [ 1. 5. 2.2933078 0.8559526 ] [ 5. 1. 2. 1.5541857 ]] """ func_name = "cho_factor" _type_check(func_name, overwrite_a, bool, 'overwrite_a') _type_check(func_name, check_finite, bool, 'check_finite') _type_check(func_name, lower, bool, 'lower') _mstype_check(func_name, a, mstype.TensorType) _dtype_check(func_name, a, [mstype.int32, mstype.int64, mstype.float32, mstype.float64]) _square_check(func_name, a) if F.dtype(a) in (mstype.int32, mstype.int64): a = F.cast(a, mstype.float64) cholesky_net = Cholesky() c = cholesky_net(a) if not lower: c = _nd_transpose(c) return c, lower
[docs]def cholesky(a, lower=False, overwrite_a=False, check_finite=True): """ Compute the cholesky decomposition of a matrix. Returns the cholesky decomposition of a Hermitian positive-definite matrix A. Base on the value of `lower`, perform the following decomposition: - when `lower` is True: :math:`A = L L^*` - when `lower` is False: :math:`A = U^* U` :math:`L^*` is a conjugate transpose matrix of L. :math:`U^*` is a conjugate transpose matrix of U. Note: - `cholesky` is not supported on Windows platform yet. - Only float32, float64, int32, int64 are supported Tensor dtypes. - If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64. Args: a (Tensor): square Matrix of :math:`(M, M)` to be decomposed. lower (bool, optional): Whether to compute the upper- or lower-triangular cholesky factorization. Default: ``False`` . overwrite_a (bool, optional): Whether to overwrite data in `a` (may improve performance). Default: ``False`` . in mindspore, this arg does not work right now. check_finite (bool, optional): Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: ``True`` . in mindspore, this arg does not work right now. Returns: Tensor, upper- or lower-triangular cholesky factor of `a`. Raises: ValueError: If input a tensor is not a square matrix or it's dims not equal to 2D. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as onp >>> from mindspore import Tensor >>> from mindspore.scipy.linalg import cholesky >>> a = Tensor(onp.array([[1, 2],[2, 5]]).astype(onp.float32)) >>> L = cholesky(a, lower=True) >>> print(L) [[1. 0.] [2. 1.]] """ func_name = "cholesky" _type_check(func_name, overwrite_a, bool, 'overwrite_a') _type_check(func_name, check_finite, bool, 'check_finite') _type_check(func_name, lower, bool, 'lower') _mstype_check(func_name, a, mstype.TensorType) _dtype_check(func_name, a, [mstype.int32, mstype.int64, mstype.float32, mstype.float64]) _square_check(func_name, a) if F.dtype(a) in (mstype.int32, mstype.int64): a = F.cast(a, mstype.float64) cholesky_net = Cholesky() c = cholesky_net(a) if not lower: c = _nd_transpose(c) return c
[docs]def cho_solve(c_and_lower, b, overwrite_b=False, check_finite=True): """ Given the cholesky factorization of :math:`A`, solve the linear equation. .. math:: A x = b Note: - `cho_solve` is not supported on Windows platform yet. - Only float32, float64, int32, int64 are supported Tensor dtypes. - If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64. Args: c_and_lower ((Tensor, bool)): cholesky factorization of :math:`a`, as given by :func:`mindspore.scipy.linalg.cho_factor`. b (Tensor): Right-hand side. overwrite_b (bool, optional): Whether to overwrite data in :math:`b` (may improve performance). Default: ``False``. check_finite (bool, optional): Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: ``True``. Returns: Tensor, the solution to the system :math:`A x = b`. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as onp >>> import mindspore as ms >>> a = ms.Tensor(onp.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]]).astype(onp.float32)) >>> b = ms.Tensor(onp.array([1, 1, 1, 1]).astype(onp.float32)) >>> c, low = ms.scipy.linalg.cho_factor(a) >>> x = ms.scipy.linalg.cho_solve((c, low), b) >>> print(x) [-0.01749266 0.11953348 0.01166185 0.15743434] """ func_name = "cho_solve" (c, lower) = c_and_lower _type_check(func_name, overwrite_b, bool, 'overwrite_b') _type_check(func_name, check_finite, bool, 'check_finite') _type_check(func_name, lower, bool, 'lower') _mstype_check(func_name, c, mstype.TensorType, 'c') _mstype_check(func_name, b, mstype.TensorType, 'b') _dtype_check(func_name, c, [mstype.int32, mstype.int64, mstype.float32, mstype.float64], 'c') _dtype_check(func_name, b, [mstype.int32, mstype.int64, mstype.float32, mstype.float64], 'b') _solve_check(func_name, c, b, 'c', 'b') if F.dtype(c) in (mstype.int32, mstype.int64): c = F.cast(c, mstype.float64) b = F.cast(b, mstype.float64) # Do not support complex, so trans is chosen from ('T', 'N') if lower: l_trans = 'N' l_t_trans = 'T' else: l_trans = 'T' l_t_trans = 'N' b = SolveTriangular(lower=lower, unit_diagonal=False, trans=l_trans)(c, b) b = SolveTriangular(lower=lower, unit_diagonal=False, trans=l_t_trans)(c, b) return b
[docs]def eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1, check_finite=True): # pylint: disable=W0622 """ Solve a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix. Find eigenvalues Tensor `w` and optionally eigenvectors Tensor `v` of Tensor `a`, where `b` is positive definite such that for every eigenvalue `λ` (i-th entry of w) and its eigenvector `vi` (i-th column of `v`) satisfies: .. code-block:: a @ vi = λ * b @ vi vi.conj().T @ a @ vi = λ vi.conj().T @ b @ vi = 1 In the standard problem, `b` is assumed to be the identity matrix. Note: - `eigh` is not supported on Windows platform yet. - Only float32, float64, int32, int64 are supported Tensor dtypes. - If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64. Args: a (Tensor): A :math:`(M, M)` complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors will be computed. b (Tensor, optional): A :math:`(M, M)` complex Hermitian or real symmetric definite positive matrix in. If omitted, identity matrix is assumed. Default: ``None``. lower (bool, optional): Whether the pertinent Tensor data is taken from the lower or upper triangle of `a` and, if applicable, `b`. Default: ``True``. eigvals_only (bool, optional): Whether to calculate only eigenvalues and no eigenvectors. Default: ``False`` . overwrite_a (bool, optional): Whether to overwrite data in `a` (may improve performance). Default: ``False`` . overwrite_b (bool, optional): Whether to overwrite data in `b` (may improve performance). Default: ``False`` . turbo (bool, optional): use divide and conquer algorithm (faster but expensive in memory, only for generalized eigenvalue problem and if full set of eigenvalues are requested.). Has no significant effect if eigenvectors are not requested. Default: ``True`` . eigvals (tuple, optional): Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding eigenvectors to be returned: :math:`0 <= lo <= hi <= M-1`. If omitted, all eigenvalues and eigenvectors are returned. Default: ``None`` . type (int, optional): For the generalized problems, this keyword specifies the problem type to be solved for `w` and `v` (only takes 1, 2, 3 as possible inputs): .. code-block:: 1 => a @ v = w @ b @ v 2 => a @ b @ v = w @ v 3 => b @ a @ v = w @ v This keyword is ignored for standard problems. Default: ``1`` . check_finite (bool, optional): Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: ``True`` . Returns: - Tensor with shape :math:`(N,)`, the :math:`N (1<=N<=M)` selected eigenvalues, in ascending order, each repeated according to its multiplicity. - Tensor with shape :math:`(M, N)`, if `eigvals_only == False`. Raises: RuntimeError: If eigenvalue computation does not converge, an error occurred, or b matrix is not definite positive. Note that if input matrices are not symmetric or Hermitian, no error will be reported but results will be wrong. TypeError: If `a` is not Tensor. TypeError: If `lower` is not bool. TypeError: If `eigvals_only` is not bool. TypeError: If `overwrite_a` is not bool. TypeError: If `overwrite_b` is not bool. TypeError: If `turbo` is not bool. TypeError: If `check_finite` is not bool. ValueError: If `a` is not 2D square matrix. ValueError: If `b` is not None. ValueError: If `eigvals` is not None. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as onp >>> import mindspore.numpy as mnp >>> from mindspore import Tensor, dtype >>> from mindspore.scipy.linalg import eigh >>> a = Tensor([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]], dtype.float64) >>> w, v = eigh(a) >>> print(onp.allclose(mnp.dot(a, v).asnumpy(), mnp.dot(v, mnp.diag(w)).asnumpy(), 1e-5, 1e-8)) True """ func_name = 'eigh' eigh_type_check = F.partial(_type_check, func_name) eigh_value_check = F.partial(_value_check, func_name) eigh_type_check(lower, bool, 'lower') eigh_type_check(eigvals_only, bool, 'eigvals_only') eigh_type_check(overwrite_a, bool, 'overwrite_a') eigh_type_check(overwrite_b, bool, 'overwrite_b') eigh_type_check(turbo, bool, 'turbo') eigh_type_check(type, int, 'type') eigh_type_check(check_finite, bool, 'check_finite') _mstype_check(func_name, a, mstype.TensorType) _dtype_check(func_name, a, [mstype.int32, mstype.int64, mstype.float32, mstype.float64, mstype.complex64, mstype.complex128]) _square_check(func_name, a) eigh_value_check(b, None, 'b', op='is', fmt='todo') eigh_value_check(eigvals, None, 'eigvals', op='is', fmt='todo') if F.dtype(a) in (mstype.int32, mstype.int64): a = F.cast(a, mstype.float64) eigh_net = Eigh(not eigvals_only, lower=lower) return eigh_net(a)
def lu_pivots_to_permutation(pivots, permutation_size: int): """transfer pivots to permutation""" batch_dims = pivots.shape[:-1] k = pivots.shape[-1] per = mnp.arange(0, permutation_size) permutation = mnp.broadcast_to(per, batch_dims + (permutation_size,)) permutation = mnp.array(permutation) if permutation_size == 0: return permutation for i in range(k): j = pivots[..., i] loc = mnp.ix_(*(mnp.arange(0, b) for b in batch_dims)) x = permutation[..., i] y = permutation[loc + (j,)] permutation[loc + (j,)] = x permutation[..., i] = y return permutation
[docs]def lu_factor(a, overwrite_a=False, check_finite=True): """ Compute pivoted LU decomposition of a square matrix, and its outputs can be directly used as the inputs of `lu_solve`. The decomposition is: .. math:: a = P L U where :math:`P` is a permutation matrix, :math:`L` lower triangular with unit diagonal elements, and :math:`U` upper triangular. Note: - `lu_factor` is not supported on Windows platform yet. - Only float32, float64, int32, int64 are supported Tensor dtypes. - If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64. Args: a (Tensor): square matrix of :math:`(M, M)` to decompose. Note that if the input tensor is not a float, then it will be cast to mstype.float32. overwrite_a (bool, optional): Whether to overwrite data in :math:`a` (may increase performance). Default: ``False`` . check_finite (bool, optional): Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: ``True`` . Returns: - Tensor, a square matrix of :math:`(M, M)` containing `U` in its upper triangle, and `L` in its lower triangle. The unit diagonal elements of `L` are not stored. - Tensor, :math:`(M,)` pivot indices representing the permutation matrix `P`: the i-th element value j in the indices indicates that row i of matrix was interchanged with row j. Raises: ValueError: If :math:`a` is not 2D square. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as onp >>> from mindspore import Tensor >>> from mindspore.scipy.linalg import lu_factor >>> a = Tensor(onp.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]).astype(onp.float64)) >>> lu, piv = lu_factor(a) >>> print(lu) [[ 7. 5. 6. 6. ] [ 0.28571429 3.57142857 6.28571429 5.28571429] [ 0.71428571 0.12 -1.04 3.08 ] [ 0.71428571 -0.44 -0.46153846 7.46153846]] >>> print(piv) [2 2 3 3] """ func_name = "lu_factor" _type_check(func_name, overwrite_a, bool, 'overwrite_a') _type_check(func_name, check_finite, bool, 'check_finite') _mstype_check(func_name, a, mstype.TensorType) _dtype_check(func_name, a, [mstype.int32, mstype.int64, mstype.float32, mstype.float64]) _square_check(func_name, a) if F.dtype(a) in (mstype.int32, mstype.int64): a = F.cast(a, mstype.float64) msp_lu = LU() m_lu, pivots, _ = msp_lu(a) return m_lu, pivots
[docs]def lu(a, permute_l=False, overwrite_a=False, check_finite=True): """ Compute pivoted LU decomposition of a general matrix. The decomposition is: .. math:: A = P L U where :math:`P` is a permutation matrix, :math:`L` lower triangular with unit diagonal elements, and :math:`U` upper triangular. Note: - `lu` is not supported on Windows platform yet. - Only float32, float64, int32, int64 are supported Tensor dtypes. - If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64. Args: a (Tensor): a :math:`(M, N)` matrix to decompose. Note that if the input tensor is not a float, then it will be cast to mstype.float32. permute_l (bool, optional): Perform the multiplication :math:`P L` (Default: do not permute). Default: ``False`` . overwrite_a (bool, optional): Whether to overwrite data in :math:`a` (may improve performance). Default: ``False`` . check_finite (bool, optional): Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: ``True`` . Returns: **If permute_l == False** - Tensor, :math:`(M, M)` permutation matrix. - Tensor, :math:`(M, K)` lower triangular or trapezoidal matrix with unit diagonal. :math:`K = min(M, N)`. - Tensor, :math:`(K, N)` upper triangular or trapezoidal matrix. **If permute_l == True** - Tensor, :math:`(M, K)` permuted L matrix. :math:`K = min(M, N)`. - Tensor, :math:`(K, N)` upper triangular or trapezoidal matrix. Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as onp >>> from mindspore import Tensor >>> from mindspore.scipy.linalg import lu >>> a = Tensor(onp.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]).astype(onp.float64)) >>> p, l, u = lu(a) >>> print(p) [[0 1 0 0] [0 0 0 1] [1 0 0 0] [0 0 1 0]] >>> print(l) [[ 1. 0. 0. 0. ] [ 0.2857143 1. 0. 0. ] [ 0.71428573 0.12 1. 0. ] [ 0.71428573 -0.44 -0.46153846 1. ]] >>> print(u) [[ 7. 5. 6. 6. ] [ 0. 3.57142854 6.28571415 5.28571415] [ 0. 0. -1.03999996 3.07999992] [ 0. -0. -0. 7.46153831]] """ func_name = "lu" _type_check(func_name, permute_l, bool, 'permute_l') _type_check(func_name, overwrite_a, bool, 'overwrite_a') _type_check(func_name, check_finite, bool, 'check_finite') _mstype_check(func_name, a, mstype.TensorType) _dtype_check(func_name, a, [mstype.int32, mstype.int64, mstype.float32, mstype.float64]) _value_check(func_name, a.ndim, 2, 'a', 'dimension') if F.dtype(a) in (mstype.int32, mstype.int64): a = F.cast(a, mstype.float64) msp_lu = LU() m_lu, _, p = msp_lu(a) m = a.shape[-2] n = a.shape[-1] if m > n: _raise_value_error("last two dimensions of LU decomposition must be row less or equal to col.") k = min(m, n) l = mnp.tril(m_lu, -1)[..., :k] + mnp.eye(m, k, dtype=F.dtype(a)) u = mnp.triu(m_lu)[:k, :] if permute_l: return mnp.dot(p, l), u return p, l, u
def lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True): """Solve an equation system, A x = B, given the LU factorization of A Note: - `lu_solve` is not supported on Windows platform yet. - Only float32, float64, int32, int64 are supported Tensor dtypes. - If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64. Args: lu_and_piv (Tensor, Tensor): Factorization of the coefficient matrix a, as given by lu_factor b (Tensor): Right-hand side trans (int, optional): {0, 1, 2} Type of system to solve: ===== ========= trans system ===== ========= 0 a x = b 1 a^T x = b 2 a^H x = b ===== ========= overwrite_b (bool, optional): Whether to overwrite data in b (may increase performance) check_finite ( bool, optional): Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns: Tensor, solution to the system Supported Platforms: ``GPU`` ``CPU`` Examples: >>> import numpy as onp >>> from mindspore import Tensor >>> from mindspore.scipy.linalg import lu_factor, lu_solve >>> a = Tensor(onp.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]).astype(onp.float64)) >>> b = Tensor(onp.array([1, 1, 1, 1]).astype(onp.float64)) >>> lu, piv = lu_factor(a) >>> print(lu_solve((lu, piv), b)) [ 0.05154639, -0.08247423, 0.08247423, 0.09278351] """ func_name = "lu_solve" lu_matrix, pivot = lu_and_piv _type_check(func_name, overwrite_b, bool, 'overwrite_b') _type_check(func_name, check_finite, bool, 'check_finite') _mstype_check(func_name, lu_matrix, mstype.TensorType, 'lu_matrix') _mstype_check(func_name, b, mstype.TensorType, 'b') _mstype_check(func_name, pivot, mstype.TensorType, 'pivot') _dtype_check(func_name, lu_matrix, [mstype.int32, mstype.int64, mstype.float32, mstype.float64], 'lu_matrix') _dtype_check(func_name, b, [mstype.int32, mstype.int64, mstype.float32, mstype.float64], 'b') _dtype_check(func_name, pivot, [mstype.int32], 'pivot') _solve_check(func_name, lu_matrix, b, 'lu_matrix', 'b') _value_check(func_name, pivot.ndim, 1, 'pivot', 'dimension') _value_check(func_name, lu_matrix.shape, pivot.shape, 'lu_matrix', 'pivot', op='solve', fmt='solve') _value_check(func_name, trans, (0, 1, 2), 'trans', 'value') if F.dtype(lu_matrix) in (mstype.int32, mstype.int64): lu_matrix = F.cast(lu_matrix, mstype.float64) b = F.cast(b, mstype.float64) permutation = lu_pivots_to_permutation(pivot, pivot.size) rhs_vector = lu_matrix.ndim == b.ndim + 1 x = b[permutation, :] if trans == 0: x = SolveTriangular(lower=True, unit_diagonal=True, trans='N')(lu_matrix, x) x = SolveTriangular(lower=False, unit_diagonal=False, trans='N')(lu_matrix, x) else: x = SolveTriangular(lower=False, unit_diagonal=False, trans='T')(lu_matrix, x) x = SolveTriangular(lower=True, unit_diagonal=True, trans='T')(lu_matrix, x) x = mnp.reshape(x, b.shape) return x[..., 0] if rhs_vector else x def _det_2x2(a): return (a[..., 0, 0] * a[..., 1, 1] - a[..., 0, 1] * a[..., 1, 0]) def _det_3x3(a): return (a[..., 0, 0] * a[..., 1, 1] * a[..., 2, 2] + a[..., 0, 1] * a[..., 1, 2] * a[..., 2, 0] + a[..., 0, 2] * a[..., 1, 0] * a[..., 2, 1] - a[..., 0, 2] * a[..., 1, 1] * a[..., 2, 0] - a[..., 0, 0] * a[..., 1, 2] * a[..., 2, 1] - a[..., 0, 1] * a[..., 1, 0] * a[..., 2, 2]) def det(a, overwrite_a=False, check_finite=True): """ Compute the determinant of a matrix The determinant of a square matrix is a value derived arithmetically from the coefficients of the matrix. The determinant for a 3x3 matrix, for example, is computed as follows: .. code-block:: a b c d e f = A g h i det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h Note: - `det` is not supported on Windows platform yet. - Only float32, float64, int32, int64 are supported Tensor dtypes. - If Tensor with dtype int32 or int64 is passed, it will be cast to mstype.float64. Args: a (Tensor): A square matrix to compute. Note that if the input tensor is not a `float`, then it will be cast to :class:`mstype.float32`. overwrite_a (bool, optional): Allow overwriting data in a (may enhance performance). check_finite (bool, optional): Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Raises: ValueError: If :math:`a` is not square. Returns: Tensor, Determinant of `a`. Examples: >>> import numpy as onp >>> from mindspore import Tensor >>> from mindspore.scipy.linalg import det >>> a = Tensor(onp.array([[0, 2, 3], [4, 5, 6], [7, 8, 9]])).astype(onp.float64) >>> print(det(a)) 3.0 """ func_name = "det" _type_check(func_name, overwrite_a, bool, 'overwrite_a') _type_check(func_name, check_finite, bool, 'check_finite') _mstype_check(func_name, a, mstype.TensorType) _square_check(func_name, a) _dtype_check(func_name, a, [mstype.int32, mstype.int64, mstype.float32, mstype.float64]) if F.dtype(a) in (mstype.int32, mstype.int64): a = F.cast(a, mstype.float64) # special case if a.shape[-2] == 2: return _det_2x2(a) if a.shape[-2] == 3: return _det_3x3(a) lu_matrix, pivot = lu_factor(a) diag = lu_matrix.diagonal(axis1=-2, axis2=-1) pivot_not_equal = (pivot != mnp.arange(a.shape[-1])).astype(mstype.int64) pivot_sign = mnp.count_nonzero(pivot_not_equal, axis=-1) sign = -2. * (pivot_sign % 2) + 1. return sign * P.ReduceProd(keep_dims=False)(diag, -1)