Source code for mindspore.dataset.audio.utils

# Copyright 2021-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Enum for audio ops."""
from __future__ import absolute_import

from enum import Enum

import mindspore._c_dataengine as cde
from mindspore.dataset.core.validator_helpers import check_non_negative_float32, check_non_negative_int32, \
    check_pos_float32, check_pos_int32, type_check


[docs]class BorderType(str, Enum): """ Padding mode. Possible enumeration values are: ``BorderType.CONSTANT``, ``BorderType.EDGE``, ``BorderType.REFLECT``, ``BorderType.SYMMETRIC``. - BorderType.CONSTANT: Pad with a constant value. - BorderType.EDGE: Pad with the last value on the edge. - BorderType.REFLECT: Reflect the value on the edge while omitting the last one. For example, pad [1, 2, 3, 4] with 2 elements on both sides will result in [3, 2, 1, 2, 3, 4, 3, 2]. - BorderType.SYMMETRIC: Reflect the value on the edge while repeating the last one. For example, pad [1, 2, 3, 4] with 2 elements on both sides will result in [2, 1, 1, 2, 3, 4, 4, 3]. Note: This class derived from class str to support json serializable. """ CONSTANT: str = "constant" EDGE: str = "edge" REFLECT: str = "reflect" SYMMETRIC: str = "symmetric"
[docs]class DensityFunction(str, Enum): """ Density function type. Possible enumeration values are: ``DensityFunction.TPDF``, ``DensityFunction.RPDF``, ``DensityFunction.GPDF``. - DensityFunction.TPDF: Triangular Probability Density Function. - DensityFunction.RPDF: Rectangular Probability Density Function. - DensityFunction.GPDF: Gaussian Probability Density Function. """ TPDF: str = "TPDF" RPDF: str = "RPDF" GPDF: str = "GPDF"
[docs]class FadeShape(str, Enum): """ Fade Shapes. Possible enumeration values are: ``FadeShape.QUARTER_SINE``, ``FadeShape.HALF_SINE``, ``FadeShape.LINEAR``, ``FadeShape.LOGARITHMIC``, ``FadeShape.EXPONENTIAL``. - FadeShape.QUARTER_SINE: means the fade shape is quarter_sine mode. - FadeShape.HALF_SINE: means the fade shape is half_sine mode. - FadeShape.LINEAR: means the fade shape is linear mode. - FadeShape.LOGARITHMIC: means the fade shape is logarithmic mode. - FadeShape.EXPONENTIAL: means the fade shape is exponential mode. """ QUARTER_SINE: str = "quarter_sine" HALF_SINE: str = "half_sine" LINEAR: str = "linear" LOGARITHMIC: str = "logarithmic" EXPONENTIAL: str = "exponential"
[docs]class GainType(str, Enum): """ Gain Types. Possible enumeration values are: ``GainType.AMPLITUDE``, ``GainType.POWER``, ``GainType.DB``. - GainType.AMPLITUDE: means input gain type is amplitude. - GainType.POWER: means input gain type is power. - GainType.DB: means input gain type is decibel. """ AMPLITUDE: str = "amplitude" POWER: str = "power" DB: str = "db"
[docs]class Interpolation(str, Enum): """ Interpolation Type. Possible enumeration values are: ``Interpolation.LINEAR``, ``Interpolation.QUADRATIC``. - Interpolation.LINEAR: means input interpolation type is linear. - Interpolation.QUADRATIC: means input interpolation type is quadratic. """ LINEAR: str = "linear" QUADRATIC: str = "quadratic"
[docs]class MelType(str, Enum): """ Mel scale implementation type. Possible enumeration values are: ``MelType.HTK``, ``MelType.SLANEY``. - MelType.HTK: The Hidden Markov Toolkit (HTK) implementation, refer to `HTK <https://htk.eng.cam.ac.uk/>`_ . - MelType.SLANEY: The MATLAB Auditory Toolbox of Slaney implementation, refer to `Auditory Toolbox <https://engineering.purdue.edu/~malcolm/interval/1998-010/>`_ . """ HTK: str = "htk" SLANEY: str = "slaney"
[docs]class Modulation(str, Enum): """ Modulation Type. Possible enumeration values are: Modulation.SINUSOIDAL, Modulation.TRIANGULAR. - Modulation.SINUSOIDAL: means input modulation type is sinusoidal. - Modulation.TRIANGULAR: means input modulation type is triangular. """ SINUSOIDAL: str = "sinusoidal" TRIANGULAR: str = "triangular"
[docs]class NormMode(str, Enum): """ Normalization mode. Possible enumeration values are: ``NormMode.ORTHO``, ``NormMode.NONE``. - NormMode.ORTHO: Use an ortho-normal DCT basis. - NormMode.NONE: No normalization. """ ORTHO: str = "ortho" NONE: str = "none"
[docs]class NormType(str, Enum): """ Normalization type. Possible enumeration values are: ``NormType.SLANEY``, ``NormType.NONE``. - NormType.SLANEY: Use an area normalization. - NormType.NONE: No narmalization. """ SLANEY: str = "slaney" NONE: str = "none"
[docs]class ResampleMethod(str, Enum): """ Resample method. Possible enumeration values are: ``ResampleMethod.SINC_INTERPOLATION``, ``ResampleMethod.KAISER_WINDOW``. - ResampleMethod.SINC_INTERPOLATION: The Whittaker-Shannon interpolation or sinc interpolation formula. - ResampleMethod.KAISER_WINDOW: The Kaiser window interpolation. """ SINC_INTERPOLATION: str = "sinc_interpolation" KAISER_WINDOW: str = "kaiser_window"
[docs]class ScaleType(str, Enum): """ Scale Types. Possible enumeration values are: ``ScaleType.POWER``, ``ScaleType.MAGNITUDE``. - ScaleType.POWER: means the scale of input audio is power. - ScaleType.MAGNITUDE: means the scale of input audio is magnitude. """ POWER: str = "power" MAGNITUDE: str = "magnitude"
[docs]class WindowType(str, Enum): """ Window function type. Possible enumeration values are: ``WindowType.BARTLETT``, ``WindowType.BLACKMAN``, ``WindowType.HAMMING``, ``WindowType.HANN``, ``WindowType.KAISER``. - WindowType.BARTLETT: Bartlett window function. - WindowType.BLACKMAN: Blackman window function. - WindowType.HAMMING: Hamming window function. - WindowType.HANN: Hann window function. - WindowType.KAISER: Kaiser window function. Currently, it is not supported on macOS. """ BARTLETT: str = "bartlett" BLACKMAN: str = "blackman" HAMMING: str = "hamming" HANN: str = "hann" KAISER: str = "kaiser"
DE_C_NORM_MODE = {NormMode.ORTHO: cde.NormMode.DE_NORM_MODE_ORTHO, NormMode.NONE: cde.NormMode.DE_NORM_MODE_NONE}
[docs]def create_dct(n_mfcc, n_mels, norm=NormMode.NONE): """ Create a DCT transformation matrix with shape (n_mels, n_mfcc), normalized depending on norm. Args: n_mfcc (int): Number of mfc coefficients to retain, the value must be greater than 0. n_mels (int): Number of mel filterbanks, the value must be greater than 0. norm (NormMode, optional): Normalization mode, can be ``NormMode.NONE`` or ``NormMode.ORTHO``. Default: ``NormMode.NONE``. Returns: numpy.ndarray, the transformation matrix, to be right-multiplied to row-wise data of size (n_mels, n_mfcc). Raises: TypeError: If `n_mfcc` is not of type int. ValueError: If `n_mfcc` is not positive. TypeError: If `n_mels` is not of type int. ValueError: If `n_mels` is not positive. TypeError: If `n_mels` is not of type :class:`mindspore.dataset.audio.NormMode` . Supported Platforms: ``CPU`` Examples: >>> from mindspore.dataset.audio import create_dct, NormMode >>> >>> dct = create_dct(100, 200, NormMode.NONE) """ if not isinstance(n_mfcc, int): raise TypeError("n_mfcc with value {0} is not of type {1}, but got {2}.".format( n_mfcc, int, type(n_mfcc))) if not isinstance(n_mels, int): raise TypeError("n_mels with value {0} is not of type {1}, but got {2}.".format( n_mels, int, type(n_mels))) if not isinstance(norm, NormMode): raise TypeError("norm with value {0} is not of type {1}, but got {2}.".format( norm, NormMode, type(norm))) if n_mfcc <= 0: raise ValueError("n_mfcc must be greater than 0, but got {0}.".format(n_mfcc)) if n_mels <= 0: raise ValueError("n_mels must be greater than 0, but got {0}.".format(n_mels)) return cde.create_dct(n_mfcc, n_mels, DE_C_NORM_MODE[norm]).as_array()
DE_C_MEL_TYPE = {MelType.HTK: cde.MelType.DE_MEL_TYPE_HTK, MelType.SLANEY: cde.MelType.DE_MEL_TYPE_SLANEY} DE_C_NORM_TYPE = {NormType.SLANEY: cde.NormType.DE_NORM_TYPE_SLANEY, NormType.NONE: cde.NormType.DE_NORM_TYPE_NONE}
[docs]def linear_fbanks(n_freqs, f_min, f_max, n_filter, sample_rate): """ Creates a linear triangular filterbank. Args: n_freqs (int): Number of frequencies to highlight/apply. f_min (float): Minimum frequency in Hz. f_max (float): Maximum frequency in Hz. n_filter (int): Number of (linear) triangular filter. sample_rate (int): Sample rate of the waveform. Returns: numpy.ndarray, the linear triangular filterbank. Raises: TypeError: If `n_freqs` is not of type int. ValueError: If `n_freqs` is negative. TypeError: If `f_min` is not of type float. ValueError: If `f_min` is negative. TypeError: If `f_max` is not of type float. ValueError: If `f_max` is negative. ValueError: If `f_min` is larger than `f_max`. TypeError: If `n_filter` is not of type int. ValueError: If `n_filter` is not positive. TypeError: If `sample_rate` is not of type int. ValueError: If `sample_rate` is not positive. Supported Platforms: ``CPU`` Examples: >>> from mindspore.dataset.audio import linear_fbanks >>> >>> fbanks = linear_fbanks(n_freqs=4096, f_min=0, f_max=8000, n_filter=40, sample_rate=16000) """ type_check(n_freqs, (int,), "n_freqs") check_non_negative_int32(n_freqs, "n_freqs") type_check(f_min, (int, float,), "f_min") check_non_negative_float32(f_min, "f_min") type_check(f_max, (int, float,), "f_max") check_pos_float32(f_max, "f_max") if f_min > f_max: raise ValueError( "Input f_min should be no more than f_max, but got f_min: {0} and f_max: {1}.".format(f_min, f_max)) type_check(n_filter, (int,), "n_filter") check_pos_int32(n_filter, "n_filter") type_check(sample_rate, (int,), "sample_rate") check_pos_int32(sample_rate, "sample_rate") return cde.linear_fbanks(n_freqs, f_min, f_max, n_filter, sample_rate).as_array()
[docs]def melscale_fbanks(n_freqs, f_min, f_max, n_mels, sample_rate, norm=NormType.NONE, mel_type=MelType.HTK): """ Create a frequency transformation matrix. Args: n_freqs (int): Number of frequencies to highlight/apply. f_min (float): Minimum of frequency in Hz. f_max (float): Maximum of frequency in Hz. n_mels (int): Number of mel filterbanks. sample_rate (int): Sample rate of the audio waveform. norm (NormType, optional): Normalization method, can be ``NormType.NONE`` or ``NormType.SLANEY``. Default: ``NormType.NONE``. mel_type (MelType, optional): Scale to use, can be ``MelType.HTK`` or ``MelType.SLANEY``. Default: ``MelType.HTK``. Returns: numpy.ndarray, the frequency transformation matrix with shape ( `n_freqs` , `n_mels` ). Raises: TypeError: If `n_freqs` is not of type int. ValueError: If `n_freqs` is a negative number. TypeError: If `f_min` is not of type float. ValueError: If `f_min` is greater than `f_max` . TypeError: If `f_max` is not of type float. ValueError: If `f_max` is a negative number. TypeError: If `n_mels` is not of type int. ValueError: If `n_mels` is not positive. TypeError: If `sample_rate` is not of type int. ValueError: If `sample_rate` is not positive. TypeError: If `norm` is not of type :class:`mindspore.dataset.audio.NormType` . TypeError: If `mel_type` is not of type :class:`mindspore.dataset.audio.MelType` . Supported Platforms: ``CPU`` Examples: >>> from mindspore.dataset.audio import melscale_fbanks >>> >>> fbanks = melscale_fbanks(n_freqs=4096, f_min=0, f_max=8000, n_mels=40, sample_rate=16000) """ type_check(n_freqs, (int,), "n_freqs") check_non_negative_int32(n_freqs, "n_freqs") type_check(f_min, (int, float,), "f_min") check_non_negative_float32(f_min, "f_min") type_check(f_max, (int, float,), "f_max") check_pos_float32(f_max, "f_max") if f_min > f_max: raise ValueError( "Input f_min should be no more than f_max, but got f_min: {0} and f_max: {1}.".format(f_min, f_max)) type_check(n_mels, (int,), "n_mels") check_pos_int32(n_mels, "n_mels") type_check(sample_rate, (int,), "sample_rate") check_pos_int32(sample_rate, "sample_rate") type_check(norm, (NormType,), "norm") type_check(mel_type, (MelType,), "mel_type") return cde.melscale_fbanks(n_freqs, f_min, f_max, n_mels, sample_rate, DE_C_NORM_TYPE[norm], DE_C_MEL_TYPE[mel_type]).as_array()