mindspore.nn.HSigmoid

class mindspore.nn.HSigmoid[source]

Applies Hard sigmoid activation function element-wise.

Hard sigmoid is defined as:

\[\text{hsigmoid}(x_{i}) = \max(0, \min(1, \frac{x_{i} + 3}{6})),\]

HSigmoid Activation Function Graph:

../../_images/HSigmoid.png
Inputs:
  • input_x (Tensor) - The input of HSigmoid. Tensor of any dimension.

Outputs:

Tensor, with the same type and shape as the input_x.

Raises

TypeError – If input_x is not a Tensor.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> from mindspore import Tensor, nn
>>> import numpy as np
>>> x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> hsigmoid = nn.HSigmoid()
>>> result = hsigmoid(x)
>>> print(result)
[0.3333 0.1666 0.5    0.8335 0.6665]