Function Differences with tf.random.uniform_candidate_sampler
tf.random.uniform_candidate_sampler
tf.random.uniform_candidate_sampler(
true_classes,
num_true,
num_sampled,
unique,
range_max,
seed=None,
name=None
)(sampled_candidates, true_expected_count, sampled_expected_count) -> Tuple
For more information, see tf.random.uniform_candidate_sampler.
mindspore.ops.uniform_candidate_sampler
mindspore.ops.uniform_candidate_sampler(
true_classes,
num_true,
num_sampled,
unique,
range_max,
seed=0,
remove_accidental_hits=False
)(sampled_candidates, true_expected_count, sampled_expected_count) -> Tuple
For more information, see mindspore.ops.uniform_candidate_sampler.
Differences
TensorFlow: Sample a set of internal aliases using a uniform distribution and return three Tensors.
MindSpore: MindSpore API implements the same functions as TensorFlow, with some parameter names different.
Categories |
Subcategories |
TensorFlow |
MindSpore |
Differences |
---|---|---|---|---|
Parameters |
Parameter 1 |
true_classes |
true_classes |
- |
Parameter 2 |
num_true |
num_true |
- |
|
Parameter 3 |
num_sampled |
num_sampled |
- |
|
Parameter 4 |
unique |
unique |
- |
|
Parameter 5 |
range_max |
range_max |
- |
|
Parameter 6 |
seed |
seed |
- |
|
Parameter 7 |
- |
remove_accidental_hits |
Indicates whether to remove the accidental hit. Default: False |
|
Parameter 8 |
name |
- |
Not involved |
|
Return Parameters |
Parameter 1 |
sampled_candidates |
sampled_candidates |
- |
Parameter 2 |
true_expected_count |
true_expected_count |
- |
|
Parameter 3 |
sampled_expected_count |
sampled_expected_count |
- |
Code Example 1
The outputs of MindSpore and TensorFlow are consistent.
# TensorFlow
import tensorflow as tf
import numpy as np
data = tf.constant(np.random.rand(5, 3), dtype=tf.int64)
out1, out2, out3 = tf.random.uniform_candidate_sampler(data, 3, 3, False, 5, 0)
print(out1.shape)
# (3,)
print(out2.shape)
# (5, 3)
print(out3.shape)
# (3,)
# MindSpore
import mindspore
import numpy as np
from mindspore.ops import function as ops
from mindspore import Tensor
data = Tensor(np.random.rand(5, 3), mindspore.int64)
out1, out2, out3 = ops.uniform_candidate_sampler(data, 3, 3, False, 5, 0)
print(out1.shape)
# (3,)
print(out2.shape)
# (5, 3)
print(out3.shape)
# (3,)