Function Differences with tf.keras.initializers.RandomUniform
tf.keras.initializers.RandomUniform
tf.keras.initializers.RandomUniform(
minval=-0.05, maxval=0.05, seed=None, dtype=tf.dtypes.float32
)
For more information, see tf.keras.initializers.RandomUniform.
mindspore.common.initializer.Uniform
class mindspore.common.initializer.Uniform(scale=0.07)
For more information, see mindspore.common.initializer.Uniform.
Usage
TensorFlow: The upper and lower bounds of the uniform distribution are specified by the entry minval
and maxval
, i.e., U(-minval, maxval), respectively. Default values: minval=-0.05, maxval=0.05.
MindSpore: The range of the uniform distribution is specified by only one input scale
, i.e. U(-scale, scale). Default value: scale=0.7.
Code Example
import tensorflow as tf
init = tf.keras.initializers.RandomUniform()
x = init(shape=(1, 2))
with tf.Session() as sess:
print(x.eval())
# Out:
# [[0.9943197 0.93056154]]
import mindspore as ms
from mindspore.common.initializer import Uniform, initializer
x = initializer(Uniform(), shape=[1, 2], dtype=ms.float32)
print(x)
# out:
# [[0.01140347 0.0076657 ]]