Function Differences with tf.keras.initializers.RandomNormal
tf.keras.initializers.RandomNormal
tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.05, seed=None, dtype=tf.dtypes.float32
)
For more information, see tf.keras.initializers.RandomNormal.
mindspore.common.initializer.Normal
mindspore.common.initializer.Normal(sigma=0.01, mean=0.0)
For more information, see mindspore.common.initializer.Normal.
Usage
TensorFlow: generate a normal distribution with a mean of 0.0 and a standard deviation of 0.05 by default. Default values: mean=0.0, stddev=0.05.
MindSpore: generate a normal distribution with a mean of 0.0 and a standard deviation of 0.01 by default. Default values: mean=0.0, sigma=0.01.
Code Example
The following results are random.
import tensorflow as tf
init = tf.keras.initializers.RandomNormal()
x = init(shape=(2, 2))
with tf.Session() as sess:
print(x.eval())
# out:
# [[-1.4192176 1.9695756]
# [ 1.6240929 0.9677597]]
import mindspore as ms
from mindspore.common.initializer import Normal, initializer
x = initializer(Normal(), shape=[2, 2], dtype=ms.float32)
print(x)
# out:
# [[ 0.01005767 -0.00049193]
# [-0.00026987 0.02598832]]