Function Differences with tf.keras.backend.dot
tf.keras.backend.dot
tf.keras.backend.dot(x, y) -> Tensor
For more information, see tf.keras.backend.dot.
mindspore.ops.dot
mindspore.ops.dot(x1, x2) -> Tensor
For more information, see mindspore.ops.dot.
Differences
TensorFlow: Compute the dot product between two Tensor or Variable.
MindSpore: When both input parameters are tensor, MindSpore API implements the same function as TensorFlow, and only the parameter names are different. Supported only by TensorFlow when either of the two input parameters is a variable.
Categories |
Subcategories |
TensorFlow |
MindSpore |
Differences |
---|---|---|---|---|
Parameters |
Parameter 1 |
x |
x1 |
Same function, different parameter names, and MindSpore parameters can only be Tensor type |
Parameter 2 |
y |
x2 |
Same function, different parameter names, and MindSpore parameters can only be Tensor type |
Code Example
When both input parameters are of Tensor type, the function is the same and the usage is the same.
import tensorflow as tf
x = tf.ones([2, 3])
y = tf.ones([1, 3, 2])
xy = tf.keras.backend.dot(x, y)
print(xy.numpy())
# [[[3. 3.]]
# [[3. 3.]]]
# MindSpore
import mindspore
from mindspore import Tensor
import numpy as np
x1 = Tensor(np.ones(shape=[2, 3]), mindspore.float32)
x2 = Tensor(np.ones(shape=[1, 3, 2]), mindspore.float32)
out = mindspore.ops.dot(x1, x2)
print(out)
# [[[3. 3.]]
# [[3. 3.]]]