Function Differences with tf.raw_ops.LRN
tf.raw_ops.LRN
tf.raw_ops.LRN(input, depth_radius=5, bias=1, alpha=1, beta=0.5, name=None) -> Tensor
For more information, see tf.raw_ops.LRN.
mindspore.ops.LRN
mindspore.ops.LRN(depth_radius=5, bias=1.0, alpha=1.0, beta=0.5, norm_region="ACROSS_CHANNELS")(x) -> Tensor
For more information, see mindspore.ops.LRN.
Differences
TensorFlow: Performs a local response normalization operation, and returns a Tensor with the same type as the input.
MindSpore: MindSpore API implements the same functions as TensorFlow, with different parameter names and one more parameter specifying the normalized region norm_region.
Categories |
Subcategories |
TensorFlow |
MindSpore |
Differences |
---|---|---|---|---|
Parameters |
Parameter 1 |
input |
x |
Same function, different parameter names |
Parameter 2 |
depth_radius |
depth_radius |
- |
|
Parameter 3 |
bias |
bias |
- |
|
Parameter 4 |
alpha |
alpha |
- |
|
Parameter 5 |
beta |
beta |
- |
|
Parameter 6 |
- |
norm_region |
Specify the normalized region. TensorFlow does not have this parameter |
|
Parameter 7 |
name |
- |
Not Involved |
Code Example 1
The outputs of MindSpore and TensorFlow are consistent.
# TensorFlow
import tensorflow as tf
import numpy as np
input_x = tf.constant(np.array([[[[0.1], [0.2]],[[0.3], [0.4]]]]), dtype=tf.float32)
output = tf.raw_ops.LRN(input=input_x, depth_radius=1, bias=0.00001, alpha=0.0000001, beta=0.00001)
print(output.numpy())
# [[[[0.10001152]
# [0.2002304]]
# [[0.3003455]
# [0.40004608]]]]
# MindSpore
import mindspore
from mindspore import Tensor
import mindspore.ops.operations as ops
import numpy as np
input_x = Tensor(np.array([[[[0.1], [0.2]],[[0.3], [0.4]]]]), mindspore.float32)
lrn = ops.LRN(depth_radius=1, bias=0.00001, alpha=0.0000001, beta=0.00001)
output = lrn(input_x)
print(output)
# [[[[0.10001152]
# [0.2002304]]
# [[0.3003455]
# [0.40004608]]]]