Function Differences with tf.keras.optimizers.Ftrl
tf.keras.optimizers.Ftrl
tf.keras.optimizers.Ftrl(
learning_rate=0.001,
learning_rate_power=-0.5,
initial_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
name='Ftrl',
l2_shrinkage_regularization_strength=0.0,
beta=0.0,
**kwargs) -> Tensor
For more information, see tf.keras.optimizers.Ftrl.
mindspore.nn.FTRL
class mindspore.nn.FTRL(
params,
initial_accum=0.1,
learning_rate=0.001,
lr_power=-0.5,
l1=0.0,
l2=0.0,
use_locking=False,
loss_scale=1.0,
weight_decay=0.0)(grads) -> Tensor
For more information, see mindspore.nn.FTRL.
Differences
TensorFlow: An online convex optimization algorithm for shallow models with large and sparse feature feature spaces.
MindSpore: MindSpore API basically implements the same function as TensorFlow.
Categories |
Subcategories |
TensorFlow |
MindSpore |
Differences |
---|---|---|---|---|
Parameters |
Parameter 1 |
learning_rate |
learning_rate |
- |
Parameter 2 |
learning_rate_power |
lr_power |
Same function, different parameter names |
|
Parameter 3 |
initial_accumulator_value |
initial_accum |
Same function, different parameter names |
|
Parameter 4 |
l1_regularization_strength |
l1 |
Same function, different parameter names |
|
Parameter 5 |
l2_regularization_strength |
l2 |
Same function, different parameter names |
|
Parameter 6 |
name |
- |
Not involved |
|
Parameter 7 |
l2_shrinkage_regularization_strength |
weight_decay |
Same function, different parameter names |
|
Parameter 8 |
beta |
- |
A floating point value, the default value is 0.0. MindSpore does not have this parameter. |
|
Parameter 9 |
**kwargs |
- |
Not involved |
|
Parameter 10 |
- |
params |
A list composed of Parameter or a list composed of dictionaries. TensorFlow does not have this parameter. |
|
Parameter 11 |
- |
use_locking |
If True, the update operation is protected with a lock, the default value is False. TensorFlow does not have this parameter. |
|
Parameter 12 |
- |
loss_scale |
Gradient scaling factor, default value: 1.0. TensorFlow does not have this parameter. |
|
Parameter 13 |
- |
grads |
Gradient of |
Code Example 1
The learning_rate is set to 0.1. The two APIs achieve the same function and have the same usage.
# TensorFlow
import tensorflow as tf
opt = tf.keras.optimizers.Ftrl(learning_rate=0.1)
var = tf.Variable(1.0)
val0 = var.value()
loss = lambda: (var ** 2) / 2.0
step_count = opt.minimize(loss, [var]).numpy()
val1 = var.value()
print([val1.numpy()])
# [0.6031424]
step_count = opt.minimize(loss, [var]).numpy()
val2 = var.value()
print([val2.numpy()])
# [0.5532904]
# MindSpore
import numpy as np
import mindspore.nn as nn
import mindspore as ms
from mindspore.dataset import NumpySlicesDataset
from mindspore.train import Model
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.w = ms.Parameter(ms.Tensor(np.array([1.0], np.float32)), name='w')
def construct(self, x):
f = self.w * x
return f
class MyLoss(nn.LossBase):
def __init__(self, reduction='none'):
super(MyLoss, self).__init__()
def construct(self, y, y_pred):
return (y - y_pred) ** 2 / 2.0
net = Net()
loss = MyLoss()
optim = nn.FTRL(params=net.trainable_params(), learning_rate=0.1)
model = Model(net, loss_fn=loss, optimizer=optim)
data_x = np.array([1.0], dtype=np.float32)
data_y = np.array([0.0], dtype=np.float32)
data = NumpySlicesDataset((data_x, data_y), ["x", "y"])
input_x = ms.Tensor(np.array([1.0], np.float32))
y0 = net(input_x)
model.train(1, data)
y1 = net(input_x)
print(y1)
# [0.6031424]
model.train(1, data)
y2 = net(input_x)
print(y2)
# [0.5532904]
Code Example 2
The learning_rate is set to 0.01. The two APIs achieve the same function and have the same usage.
# TensorFlow
import tensorflow as tf
opt = tf.keras.optimizers.Ftrl(learning_rate=0.01)
var = tf.Variable(1.0)
val0 = var.value()
loss = lambda: (var ** 2) / 2.0
step_count = opt.minimize(loss, [var]).numpy()
val1 = var.value()
print([val1.numpy()])
# [0.688954]
step_count = opt.minimize(loss, [var]).numpy()
val2 = var.value()
print([val2.numpy()])
# [0.6834637]
# MindSpore
import numpy as np
import mindspore.nn as nn
import mindspore as ms
from mindspore.dataset import NumpySlicesDataset
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.w = ms.Parameter(ms.Tensor(np.array([1.0], np.float32)), name='w')
def construct(self, x):
f = self.w * x
return f
class MyLoss(nn.LossBase):
def __init__(self, reduction='none'):
super(MyLoss, self).__init__()
def construct(self, y, y_pred):
return (y - y_pred) ** 2 / 2.0
net = Net()
loss = MyLoss()
optim = nn.FTRL(params=net.trainable_params(), learning_rate=0.01)
model = ms.Model(net, loss_fn=loss, optimizer=optim)
data_x = np.array([1.0], dtype=np.float32)
data_y = np.array([0.0], dtype=np.float32)
data = NumpySlicesDataset((data_x, data_y), ["x", "y"])
input_x = ms.Tensor(np.array([1.0], np.float32))
y0 = net(input_x)
model.train(1, data)
y1 = net(input_x)
print(y1)
# [0.688954]
model.train(1, data)
y2 = net(input_x)
print(y2)
# [0.6834637]