Differences with torch.nn.functional.gelu
torch.nn.functional.gelu
torch.nn.functional.gelu(input) -> Tensor
For more information, see torch.nn.functional.gelu.
mindspore.ops.gelu
mindspore.ops.gelu(input_x, approximate='none')
For more information, see mindspore.ops.gelu.
Differences
PyTorch: This function represents the Gaussian error linear unit function \(GELU(X)=X\times \Phi(x)\), where \(\Phi(x)\) is the cumulative distribution function of the Gaussian distribution. The input x denotes an arbitrary number of dimensions.
MindSpore: MindSpore API implements basically the same function as PyTorch.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameter |
Parameter 1 |
- |
approximate |
There are two gelu approximation algorithms: ‘none’ and ‘tanh’, and the default value is ‘none’. After testing, the output is more similar to Pytorch when approximate is ‘none’. |
Input |
Single input |
input |
input_x |
Same function, different parameter names |
Code Example 1
The two APIs achieve the same function and have the same usage.
# PyTorch
import torch
input = torch.Tensor([[2, 4], [1, 2]])
output = torch.nn.functional.gelu(input)
print(output.detach().numpy())
# [[1.9544997 3.9998734]
# [0.8413447 1.9544997]]
# MindSpore
import mindspore
import numpy as np
x = mindspore.Tensor(np.array([[2, 4], [1, 2]]), mindspore.float32)
output = mindspore.ops.gelu(x)
print(output)
# [[1.9545997 3.99993]
# [0.841192 1.9545977]]