Differences with torch.Tensor.sum
torch.Tensor.sum
torch.Tensor.sum(dim=None, keepdim=False, dtype=None)
For more information, see torch.Tensor.sum.
mindspore.Tensor.sum
mindspore.Tensor.sum(axis=None, dtype=None, keepdims=False, initial=None)
For more information, see mindspore.Tensor.sum.
Differences
MindSpore API has the same function as that of PyTorch, but the number and order of parameters are not the same.
PyTorch: No parameter initial
. The relative order of parameters keepdim
and dtype
is different from MindSpore.
MindSpore: The starting value of the summation can be configured with the parameter initial
. The relative order of the parameters keepdim
and dtype
differs from that of PyTorch.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
---|---|---|---|---|
Parameters |
Parameter 1 |
dim |
axis |
Both parameters have different names, and both indicate the specified dimension of the summation |
Parameter 2 |
keepdim |
dtype |
The relative order of |
|
Parameter 3 |
dtype |
keepdims |
The relative order of |
|
Parameter 4 |
- |
initial |
MindSpore can configure the starting value of the summation with the parameter |
Code Example
# PyTorch
import torch
b = torch.Tensor([10, -5])
print(torch.Tensor.sum(b))
# tensor(5.)
# MindSpore
import mindspore as ms
a = ms.Tensor([10, -5], ms.float32)
print(a.sum())
# 5.0
print(a.sum(initial=2))
# 7.0