Comparing the function difference with torch.optim.lr_scheduler.ExponentialLR
torch.optim.lr_scheduler.ExponentialLR
torch.optim.lr_scheduler.ExponentialLR(
optimizer,
gamma,
last_epoch=-1,
verbose=False
)
For more information, see torch.optim.lr_scheduler.ExponentialLR.
mindspore.nn.exponential_decay_lr
mindspore.nn.exponential_decay_lr(
learning_rate,
decay_rate,
total_step,
step_per_epoch,
decay_epoch,
is_stair=False
)
For more information, see mindspore.nn.exponential_decay_lr.
mindspore.nn.ExponentialDecayLR
mindspore.nn.ExponentialDecayLR(
learning_rate,
decay_rate,
decay_steps,
is_stair=False
)
For more information, see mindspore.nn.ExponentialDecayLR.
Differences
PyTorch (torch.optim.lr_scheduler.ExponentialLR): The calculating method is \(lr * gamma^{epoch}\) . When used, the optimizer is used as input and the learning rate is updated by calling the step
method. When verbose
is True, the relevant information is printed for each update.
MindSpore (mindspore.nn.exponential_decay_lr): The calculating method is \(lr * decay\_rate^{p}\) . exponential_decay_lr
pre-generates the learning rate list and passes the list into the optimizer.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
---|---|---|---|---|
Parameter |
Parameter 1 |
optimizer |
Optimizer for PyTorch applications. MindSpore does not have this Parameter |
|
Parameter 2 |
gamma |
decay_rate |
Parameter of decay learning rate, same function, different Parameter name |
|
Parameter 3 |
last_epoch |
MindSpore does not have this Parameter |
||
Parameter 4 |
verbose |
PyTorch |
||
Parameter 5 |
learning_rate |
MindSpore sets the initial value of the learning rate. |
||
Parameter 6 |
total_step |
Total number of steps in MindSpore |
||
Parameter 7 |
step_per_epoch |
The number of steps per epoch in MindSpore |
||
Parameter 8 |
decay_steps |
The number of decay steps performed by MindSpore |
||
Parameter 9 |
is_stair |
When MindSpore |
MindSpore (mindspore.nn.ExponentialDecayLR): The calculating method is \(lr * decay\_rate^{p}\) . ExponentialDecayLR
is passed in the optimizer for training in the way of the computational graph.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
---|---|---|---|---|
Parameter |
Parameter 1 |
optimizer |
Optimizer for PyTorch applications. MindSpore does not have this Parameter |
|
Parameter 2 |
gamma |
decay_rate |
Parameter of decay learning rate, same function, different Parameter name |
|
Parameter 3 |
last_epoch |
MindSpore does not have this Parameter. |
||
Parameter 4 |
verbose |
PyTorch |
||
Parameter 5 |
learning_rate |
MindSpore sets the initial value of the learning rate. |
||
Parameter 6 |
decay_steps |
The number of decay steps performed by MindSpore |
||
Parameter 7 |
is_stair |
When MindSpore |
Code Example
# In MindSpore:
import mindspore as ms
from mindspore import nn
# In MindSpore:exponential_decay_lr
learning_rate = 0.1
decay_rate = 0.9
total_step = 6
step_per_epoch = 2
decay_epoch = 1
output = nn.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch)
print(output)
# out
# [0.1, 0.1, 0.09000000000000001, 0.09000000000000001, 0.08100000000000002, 0.08100000000000002]
# In MindSpore:ExponentialDecayLR
learning_rate = 0.1
decay_rate = 0.9
decay_steps = 4
global_step = ms.Tensor(2, ms.int32)
exponential_decay_lr = nn.ExponentialDecayLR(learning_rate, decay_rate, decay_steps)
result = exponential_decay_lr(global_step)
print(result)
# out
# 0.094868325
# In torch:
import torch
import numpy as np
from torch import optim
model = torch.nn.Sequential(torch.nn.Linear(20, 1))
optimizer = optim.SGD(model.parameters(), 0.1)
exponential_decay_lr = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
myloss = torch.nn.MSELoss()
dataset = [(torch.tensor(np.random.rand(1, 20).astype(np.float32)), torch.tensor([1.]))]
for epoch in range(5):
for input, target in dataset:
optimizer.zero_grad()
output = model(input)
loss = myloss(output.view(-1), target)
loss.backward()
optimizer.step()
exponential_decay_lr.step()
print(exponential_decay_lr.get_last_lr())
# out
# [0.09000000000000001]
# [0.08100000000000002]
# [0.07290000000000002]
# [0.06561000000000002]
# [0.05904900000000002]