mindspore.train.Loss

class mindspore.train.Loss[source]

Calculates the average of the loss. If method ‘update’ is called every \(n\) iterations, the result of evaluation will be:

\[loss = \frac{\sum_{k=1}^{n}loss_k}{n}\]
Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> import mindspore
>>> from mindspore import Tensor
>>> from mindspore.train import Loss
>>>
>>> x = Tensor(np.array(0.2), mindspore.float32)
>>> loss = Loss()
>>> loss.clear()
>>> loss.update(x)
>>> result = loss.eval()
>>> print(result)
0.20000000298023224
clear()[source]

Clears the internal evaluation result.

eval()[source]

Calculates the average of the loss.

Returns

numpy.float64. The average of the loss.

Raises

RuntimeError – If the total number is 0.

update(*inputs)[source]

Updates the internal evaluation result.

Parameters

inputs – Inputs contain only one element, the element is loss. The dimension of loss must be 0 or 1.

Raises
  • ValueError – If the length of inputs is not 1.

  • ValueError – If the dimension of loss is not 1 or 0.