mindspore.ops.isclose
- mindspore.ops.isclose(x1, x2, rtol=1e-05, atol=1e-08, equal_nan=False)[source]
Returns a new Tensor with boolean elements representing if each element of x1 is “close” to the corresponding element of x2. Closeness is defined as:
\[∣x1−x2∣ ≤ atol + rtol × ∣x2∣\]- Parameters
x1 (Tensor) – First Tensor to compare, with data type belongs to float32, float16, int32.
x2 (Tensor) – Second Tensor to compare, with data type belongs to float32, float16, int32.
rtol (float, optional) – Relative tolerance. Default:
1e-05
.atol (float, optional) – Absolute tolerance. Default:
1e-08
.equal_nan (bool, optional) – If True, then two NaNs will be considered equal. Default:
False
.
- Returns
A bool Tensor, with the shape as broadcasted result of the input x1 and x2.
- Raises
TypeError – If either of x1 and x2 is not Tensor.
TypeError – If either of x1 and x2 is not float16, float32 or int32.
TypeError – If either of atol and rtol is not float.
TypeError – If equal_nan is not bool.
TypeError – If the dtype of x1 is not same as the x2.
ValueError – If x1 and x2 can not be broadcast.
ValueError – If either of atol and rtol is less than zero.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input = Tensor(np.array([1.3, 2.1, 3.2, 4.1, 5.1]), mindspore.float16) >>> other = Tensor(np.array([1.3, 3.3, 2.3, 3.1, 5.1]), mindspore.float16) >>> output = ops.isclose(input, other) >>> print(output) [ True False False False True]