mindspore.ops.bidense
- mindspore.ops.bidense(input1, input2, weight, bias=None)[source]
Applies bilinear dense connected layer for input1 and input2. The bilinear dense function is defined as:
\[output = input1^{T} weight input2 + bias\]Warning
This is an experimental API that is subject to change or deletion.
- Parameters
input1 (Tensor) – Input Tensor of shape \((*, in1\_channels)\), where \(*\) means any number of additional dimensions. All but the last dimension should be the same with input2.
input2 (Tensor) – Input Tensor of shape \((*, in2\_channels)\), where \(*\) means any number of additional dimensions. All but the last dimension should be the same with input1.
weight (Tensor) – The weight applied to the input1 and input2. The shape is \((out\_channels, in1\_channels, in2\_channels)\).
bias (Tensor, optional) – Additive biases to the output. The shape is \((out\_channels)\) or \(()\). Defaults:
None
, the bias is 0.
- Returns
Tensor, shape \((*, out\_channels)\), where \(*\) means any number of additional dimensions. All but the last dimension should be the same with the input Tensors.
- Raises
TypeError – If input1 is not Tensor.
TypeError – If input2 is not Tensor.
TypeError – If weight is not Tensor.
TypeError – If bias is not Tensor.
ValueError – If dimensions except the last of ‘input1’ are different from ‘input2’ .
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> from mindspore import Tensor, ops >>> input1 = mindspore.Tensor([[-1.1283, 1.2603], ... [0.0214, 0.7801], ... [-1.2086, 1.2849]], mindspore.float32) >>> input2 = mindspore.Tensor([[-0.4631, 0.3238, 0.4201], ... [0.6215, -1.0910, -0.5757], ... [-0.7788, -0.0706, -0.7942]], mindspore.float32) >>> weight = mindspore.Tensor([[[-0.3132, 0.9271, 1.1010], ... [0.6555, -1.2162, -0.2987]], ... [[1.0458, 0.5886, 0.2523], ... [-1.3486, -0.8103, -0.2080]], ... [[1.1685, 0.5569, -0.3987], ... [-0.4265, -2.6295, 0.8535]], ... [[0.6948, -1.1288, -0.6978], ... [0.3511, 0.0609, -0.1122]]], mindspore.float32) >>> output = ops.bidense(input1, input2, weight) >>> print(output) [[-2.0612743 0.5581219 0.22383511 0.8667302] [1.4476739 0.12626505 1.6552988 0.21297503] [0.6003161 2.912046 0.5590313 -0.35449564]]