mindspore.ops.LogSpace

class mindspore.ops.LogSpace(steps=10, base=10, dtype=mstype.float32)[source]

Generates a 1-D Tensor with a length of steps. The tensor’s values are uniformly distributed on a logarithmic scale, ranging from \(base^{start}\) to \(base^{end}\), including both endpoints. The logarithmic scale is based on the specified base.

\[\begin{split}\begin{aligned} &step = (end - start)/(steps - 1)\\ &output = [base^{start}, base^{start + 1 * step}, ... , base^{start + (steps-2) * step}, base^{end}] \end{aligned}\end{split}\]

Warning

This is an experimental API that is subject to change or deletion.

Parameters
  • steps (int, optional) – The steps must be a non-negative integer. Default: 10 .

  • base (int, optional) – The base must be a non-negative integer. Default: 10 .

  • dtype (mindspore.dtype, optional) – The dtype of output, include mstype.float16 , mstype.float32 or mstype.float64 . Default: mstype.float32 .

Inputs:
  • start (Tensor) - Start value of interval, with shape of 0-D, dtype is float16, float32 or float64.

  • end (Tensor) - End value of interval, with shape of 0-D, dtype is float16, float32 or float64.

Outputs:

Tensor has the shape as \((step, )\). Its datatype is set by the attr ‘dtype’.

Raises
  • TypeError – If input is not a Tensor.

  • TypeError – If steps is not an int.

  • TypeError – If base is not an int.

  • TypeError – If dtype is not mstype.float16, mstype.float32 or mstype.float64.

  • ValueError – If steps is not a non-negative integer.

  • ValueError – If base is not a non-negative integer.

Supported Platforms:

Ascend GPU CPU

Examples

>>> from mindspore import Tensor, ops
>>> from mindspore import dtype as mstype
>>> logspace = ops.LogSpace(steps = 10, base = 10, dtype=mstype.float32)
>>> start = Tensor(1, mstype.float32)
>>> end = Tensor(10, mstype.float32)
>>> output = logspace(start, end)
>>> print(output)
[1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 1.e+06 1.e+07 1.e+08 1.e+09 1.e+10]