mindspore.nn.WarmUpLR
- class mindspore.nn.WarmUpLR(learning_rate, warmup_steps)[source]
Gets learning rate warming up.
For current step, the formula of computing warmup learning rate is:
\[warmup\_learning\_rate = learning\_rate * tmp\_step / warmup\_steps\]Where
\[tmp\_step= \min(current\_step, warmup\_steps)\]- Parameters
- Inputs:
global_step (Tensor) - The current step number.
- Outputs:
Tensor. The learning rate value for the current step with shape \(()\).
- Raises
TypeError – If learning_rate is not a float.
TypeError – If warmup_steps is not an int.
ValueError – If warmup_steps is less than 1.
ValueError – If learning_rate is less than or equal to 0.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> from mindspore import Tensor, nn >>> >>> learning_rate = 0.1 >>> warmup_steps = 2 >>> global_step = Tensor(2, mindspore.int32) >>> warmup_lr = nn.WarmUpLR(learning_rate, warmup_steps) >>> lr = warmup_lr(global_step) >>> net = nn.Dense(2, 3) >>> optim = nn.SGD(net.trainable_params(), learning_rate=lr)