mindspore.dataset.EnWik9Dataset

class mindspore.dataset.EnWik9Dataset(dataset_dir, num_samples=None, num_parallel_workers=None, shuffle=True, num_shards=None, shard_id=None, cache=None)[source]

EnWik9 dataset.

The generated dataset has one column [text] with type string.

Parameters
  • dataset_dir (str) – Path to the root directory that contains the dataset.

  • num_samples (int, optional) – The number of samples to be included in the dataset. Default: None , will include all samples.

  • num_parallel_workers (int, optional) – Number of worker threads to read the data. Default: None , will use global default workers(8), it can be set by mindspore.dataset.config.set_num_parallel_workers() .

  • shuffle (Union[bool, Shuffle], optional) –

    Perform reshuffling of the data every epoch. Bool type and Shuffle enum are both supported to pass in. Default: True. If shuffle is False , no shuffling will be performed. If shuffle is True , it is equivalent to setting shuffle to mindspore.dataset.Shuffle.GLOBAL . Set the mode of data shuffling by passing in enumeration variables:

    • Shuffle.GLOBAL : Shuffle both the files and samples.

    • Shuffle.FILES : Shuffle files only.

  • num_shards (int, optional) – Number of shards that the dataset will be divided into. Default: None . When this argument is specified, num_samples reflects the maximum sample number of per shard.

  • shard_id (int, optional) – The shard ID within num_shards . Default: None . This argument can only be specified when num_shards is also specified.

  • cache (DatasetCache, optional) – Use tensor caching service to speed up dataset processing. More details: Single-Node Data Cache . Default: None , which means no cache is used.

Raises
  • RuntimeError – If dataset_dir does not contain data files.

  • RuntimeError – If num_shards is specified but shard_id is None.

  • RuntimeError – If shard_id is specified but num_shards is None.

  • ValueError – If num_parallel_workers exceeds the max thread numbers.

Tutorial Examples:

Examples

>>> import mindspore.dataset as ds
>>> en_wik9_dataset_dir = "/path/to/en_wik9_dataset"
>>> dataset2 = ds.EnWik9Dataset(dataset_dir=en_wik9_dataset_dir, num_samples=2,
...                             shuffle=True)

About EnWik9 dataset:

The data of EnWik9 is UTF-8 encoded XML consisting primarily of English text. It contains 243,426 article titles, of which 85,560 are #REDIRECT to fix broken links, and the rest are regular articles.

The data is UTF-8 clean. All characters are in the range U’0000 to U’10FFFF with valid encodings of 1 to 4 bytes. The byte values 0xC0, 0xC1, and 0xF5-0xFF never occur. Also, in the Wikipedia dumps, there are no control characters in the range 0x00-0x1F except for 0x09 (tab) and 0x0A (linefeed). Linebreaks occur only on paragraph boundaries, so they always have a semantic purpose.

You can unzip the dataset files into the following directory structure and read by MindSpore’s API.

.
└── EnWik9
     ├── enwik9

Citation:

@NetworkResource{Hutter_prize,
author    = {English Wikipedia},
url       = "https://cs.fit.edu/~mmahoney/compression/textdata.html",
month     = {March},
year      = {2006}
}

Pre-processing Operation

mindspore.dataset.Dataset.apply

Apply a function in this dataset.

mindspore.dataset.Dataset.concat

Concatenate the dataset objects in the input list.

mindspore.dataset.Dataset.filter

Filter dataset by prediction.

mindspore.dataset.Dataset.flat_map

Map func to each row in dataset and flatten the result.

mindspore.dataset.Dataset.map

Apply each operation in operations to this dataset.

mindspore.dataset.Dataset.project

The specified columns will be selected from the dataset and passed into the pipeline with the order specified.

mindspore.dataset.Dataset.rename

Rename the columns in input datasets.

mindspore.dataset.Dataset.repeat

Repeat this dataset count times.

mindspore.dataset.Dataset.reset

Reset the dataset for next epoch.

mindspore.dataset.Dataset.save

Save the dynamic data processed by the dataset pipeline in common dataset format.

mindspore.dataset.Dataset.shuffle

Shuffle the dataset by creating a cache with the size of buffer_size .

mindspore.dataset.Dataset.skip

Skip the first N elements of this dataset.

mindspore.dataset.Dataset.split

Split the dataset into smaller, non-overlapping datasets.

mindspore.dataset.Dataset.take

Takes at most given numbers of elements from the dataset.

mindspore.dataset.Dataset.zip

Zip the datasets in the sense of input tuple of datasets.

Batch

mindspore.dataset.Dataset.batch

Combine batch_size number of consecutive rows into batch which apply per_batch_map to the samples first.

mindspore.dataset.Dataset.bucket_batch_by_length

Bucket elements according to their lengths.

mindspore.dataset.Dataset.padded_batch

Combine batch_size number of consecutive rows into batch which apply pad_info to the samples first.

Iterator

mindspore.dataset.Dataset.create_dict_iterator

Create an iterator over the dataset.

mindspore.dataset.Dataset.create_tuple_iterator

Create an iterator over the dataset.

Attribute

mindspore.dataset.Dataset.get_batch_size

Return the size of batch.

mindspore.dataset.Dataset.get_class_indexing

Return the class index.

mindspore.dataset.Dataset.get_col_names

Return the names of the columns in dataset.

mindspore.dataset.Dataset.get_dataset_size

Return the number of batches in an epoch.

mindspore.dataset.Dataset.get_repeat_count

Get the replication times in RepeatDataset.

mindspore.dataset.Dataset.input_indexs

Get the column index, which represents the corresponding relationship between the data column order and the network when using the sink mode.

mindspore.dataset.Dataset.num_classes

Get the number of classes in a dataset.

mindspore.dataset.Dataset.output_shapes

Get the shapes of output data.

mindspore.dataset.Dataset.output_types

Get the types of output data.

Apply Sampler

mindspore.dataset.MappableDataset.add_sampler

Add a child sampler for the current dataset.

mindspore.dataset.MappableDataset.use_sampler

Replace the last child sampler of the current dataset, remaining the parent sampler unchanged.

Others

mindspore.dataset.Dataset.device_que

Return a transferred Dataset that transfers data through a device.

mindspore.dataset.Dataset.sync_update

Release a blocking condition and trigger callback with given data.

mindspore.dataset.Dataset.sync_wait

Add a blocking condition to the input Dataset and a synchronize action will be applied.

mindspore.dataset.Dataset.to_json

Serialize a pipeline into JSON string and dump into file if filename is provided.