Function Differences with torch.unique
torch.unique
torch.unique(
*args,
**kwargs
)
For more information, see torch.unique.
mindspore.ops.unique
mindspore.ops.unique(input)
For more information, see mindspore.ops.unique.
Differences
PyTorch: Deduplicate the elements in the Tensor. The parameter sorted
can be set to determine whether the output is sorted in ascending order. Set the parameter return_inverse
to determine whether to output the index of each element of the input Tensor in the output Tensor. Set the parameter return_counts
to determine whether to output the number of each unique value in the input Tensor; set the parameter dim
to specify the dimension of the unique. MindSpore does not support these functions.
MindSpore: Deduplicate the elements in the Tensor, as well as return the position index of each element of the input Tensor in the output Tensor.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameters |
Parameter1 |
input |
input |
Consistent |
Parameter2 |
sorted |
- |
When sorted is True, the output Tensor is sorted in ascending order; when sorted is False, it is sorted in the original order |
|
Parameter3 |
return_inverse |
- |
When return_inverse is True, the index position of each element of the input Tensor in the output Tensor is returned |
|
Parameter4 |
return_counts |
- |
When return_counts is True, the number of each element of the output Tensor in the input Tensor is returned |
|
Parameter5 |
dim |
- |
Specify the dimension of unique |
Code Example
# In MindSpore
import mindspore
x = mindspore.Tensor([1, 3, 2, 3], mindspore.float32)
output, idx = mindspore.ops.unique(x)
print(output)
# [1. 3. 2.]
print(idx)
# [0 1 2 1]
# In PyTorch
import torch
output, inverse_indices, counts = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True, return_counts=True)
print(output)
# tensor([1, 2, 3])
print(inverse_indices)
# tensor([0, 2, 1, 2])
print(counts)
# tensor([1, 1, 2])
# Example of using unique with dim
output, inverse_indices = torch.unique(torch.tensor([[3, 1], [1, 2]], dtype=torch.long), sorted=True, return_inverse=True, dim=0)
print(output)
# tensor([[1, 2],
# [3, 1]])
print(inverse_indices)
# tensor([1, 0])