Function Differences with torch.Tensor.min
torch.Tensor.min
torch.Tensor.min(dim=None, keepdim=False)
For more information, see torch.Tensor.min.
mindspore.Tensor.min
mindspore.Tensor.min(axis=None, keepdims=False, *, initial=None, where=True, return_indices=False)
For more information, see mindspore.Tensor.min.
Differences
MindSpore is compatible with Numpy parameters initial
and where
based on PyTorch, added parameter return_ Indicators are used to control whether indexes are returned.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
---|---|---|---|---|
Inputs |
Input 1 |
dim |
axis |
Same function, different parameter names |
Input 2 |
keepdim |
keepdims |
Same function, different parameter names |
|
Input 3 |
- |
initial |
Not involved |
|
Input 4 |
- |
where |
Not involved |
|
Input 5 |
- |
return_indices |
Not involved |
Code Example 1
When no dimension is specified, the two APIs implement the same functionality.
import mindspore as ms
import torch
import numpy as np
np_x = np.array([[-0.0081, -0.3283, -0.7814, -0.0934],
[1.4201, -0.3566, -0.3848, -0.1608],
[-0.0446, -0.1843, -1.1348, 0.5722],
[-0.6668, -0.2368, 0.2790, 0.0453]]).astype(np.float32)
# mindspore
input_x = ms.Tensor(np_x)
output = input_x.min()
print(output)
# -1.1348
# torch
input_x = torch.tensor(np_x)
output = input_x.min()
print(output)
# tensor(-1.1348)
Code Example 2
When specifying dimensions, MindSpore does not return an index by default and needs to be manually specified.
import mindspore as ms
import torch
import numpy as np
np_x = np.array([[-0.0081, -0.3283, -0.7814, -0.0934],
[1.4201, -0.3566, -0.3848, -0.1608],
[-0.0446, -0.1843, -1.1348, 0.5722],
[-0.6668, -0.2368, 0.2790, 0.0453]]).astype(np.float32)
# mindspore
input_x = ms.Tensor(np_x)
values, indices = input_x.min(axis=1, return_indices=True)
print(values)
# [-0.7814 -0.3848 -1.1348 -0.6668]
print(indices)
# [2 2 2 0]
# torch
input_x = torch.tensor(np_x)
values, indices = input_x.min(dim=1)
print(values)
# tensor([-0.7814, -0.3848, -1.1348, -0.6668])
print(indices)
# tensor([2, 2, 2, 0])