Function Differences with torch.scatter_add
torch.scatter_add
torch.scatter_add(input, dim, index, src)
For more information, see torch.scatter_add.
mindspore.ops.tensor_scatter_elements
mindspore.ops.tensor_scatter_elements(input_x, indices, updates, axis, reduction)
For more information, see mindspore.ops.tensor_scatter_elements.
Differences
PyTorch: For all dimensions d
, index.size(d) <= src.size(d)
is required, i.e. index
can select some or all of the data of src
to be scattered into input
.
MindSpore: The shape of indices
must be the same as the shape of updates
, i.e. all data of updates
will be scattered into input_x
by indices
.
There is no difference in function.
Categories |
Subcategories |
PyTorch |
MindSpore |
Differences |
---|---|---|---|---|
Parameters |
Parameter 1 |
input |
input_x |
Same function, different parameter names |
Parameter 2 |
dim |
axis |
Same function, different parameter names |
|
Parameter 3 |
index |
indices |
For MindSpore, the shape of |
|
Parameter 4 |
src |
updates |
Same function |
|
Parameter 5 |
reduction |
|
Code Example
# PyTorch
import torch
import numpy as np
x = torch.tensor(np.zeros((5, 5)), dtype=torch.float32)
src = torch.tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=torch.float32)
index = torch.tensor(np.array([[0, 1], [0, 1], [0, 1]]), dtype=torch.int64)
out = torch.scatter_add(x=x, dim=1, index=index, src=src)
print(out)
# tensor([[1., 2., 0., 0., 0.],
# [4., 5., 0., 0., 0.],
# [7., 8., 0., 0., 0.],
# [0., 0., 0., 0., 0.],
# [0., 0., 0., 0., 0.]])
# MindSpore
import mindspore as ms
import numpy as np
x = ms.Tensor(np.zeros((5, 5)), dtype=ms.float32)
src = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=ms.float32)
index = ms.Tensor(np.array([[0, 1, 2], [0, 1, 2], [0, 1, 2]]), dtype=ms.int64)
out = ms.ops.tensor_scatter_elements(input_x=x, axis=1, indices=index, updates=src, reduction="add")
print(out)
# [[1. 2. 3. 0. 0.]
# [4. 5. 6. 0. 0.]
# [7. 8. 9. 0. 0.]
# [0. 0. 0. 0. 0.]
# [0. 0. 0. 0. 0.]]