Function Differences with torch.nn.functional.fold
torch.nn.functional.fold
torch.nn.functional.fold(input, output_size, kernel_size, dilation=1, padding=0, stride=1)
For more information, see torch.nn.functional.fold.
mindspore.ops.fold
mindspore.ops.fold(input, output_size, kernel_size, dilation=1, padding=0, stride=1)
For more information, see mindspore.ops.fold.
Differences
PyTorch:Combines an array of sliding local blocks into a large containing tensor.
MindSpore:MindSpore API implements basically the same function as PyTorch.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameter |
Parameter1 |
input |
input |
Pytorch: shape is :math: |
Parameter2 |
output_size |
output_size |
Pytorch: int or tuple, MindSpore: 1D tensor with 2 elements of data type int. |
|
Parameter3 |
kernel_size |
kernel_size |
- |
|
Parameter4 |
dilation |
dilation |
- |
|
Parameter5 |
padding |
padding |
- |
|
Parameter6 |
stride |
stride |
- |
Code Example 1
The two APIs achieve the same function and have the same usage.
# PyTorch
import torch
import numpy as np
x = np.random.randn(1, 3 * 2 * 2, 12)
input = torch.tensor(x, dtype=torch.float32)
output = torch.nn.functional.fold(input, output_size=(4, 5), kernel_size=(2, 2))
print(output.detach().shape)
# [1, 3, 4, 5]
# MindSpore
import mindspore
import numpy as np
x = np.random.randn(1, 3, 4, 12)
input = mindspore.Tensor(x, mindspore.float32)
output_size = mindspore.Tensor((4, 5), mindspore.int32)
output = mindspore.ops.fold(input, output_size, kernel_size=(2, 2))
print(output)
# (1, 3, 4, 5)