Function Differences with torch.empty
torch.empty
torch.empty(
*size,
*,
out=None,
dtype=None,
layout=torch.strided,
device=None,
requires_grad=False,
pin_memory=False,
memory_format=torch.contiguous_format
) -> Tensor
For more information, see torch.empty.
mindspore.numpy.empty
mindspore.numpy.empty(shape, dtype=mstype.float32) -> Tensor
For more information, see mindspore.numpy.empty.
Differences
PyTorch: Return an uninitialized tensor, the shape of which is defined by size.
MindSpore: MindSpore API basically implements the same function as PyTorch, but the default value of the dtype parameter is different.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameters |
Parameter 1 |
size |
shape |
Same function, different parameter names |
Parameter 2 |
out |
- |
Not involved |
|
Parameter 3 |
dtype |
dtype |
Same function, different default values |
|
Parameter 4 |
layout |
- |
Not involved |
|
Parameter 5 |
device |
- |
Not involved |
|
Parameter 6 |
requires_grad |
- |
MindSpore does not have this parameter and supports reverse derivation by default |
|
Parameter 7 |
pin_memory |
- |
Not involved |
|
Parameter 8 |
memory_format |
- |
Not involved |
Code Example 1
For the parameter dtype, PyTorch defaults to None, and the output type is torch.float32, while MindSpore defaults to mstype.float32.
# PyTorch
import torch
torch_output = torch.empty(2, 3)
print(list(torch_output.shape))
# [2, 3]
# MindSpore
import mindspore
ms_output = mindspore.numpy.empty((2, 3))
print(ms_output.shape)
# (2, 3)