Function Differences with torch.Tensor.masked_scatter
torch.Tensor.masked_scatter
torch.Tensor.masked_scatter(mask, tensor) -> Tensor
For more information, see torch.Tensor.masked_scatter.
mindspore.Tensor.masked_scatter
mindspore.Tensor.masked_scatter(mask, tensor) -> Tensor
For more information, see mindspore.Tensor.masked_scatter.
Differences
PyTorch: Returns a Tensor. Updates the value in the “self Tensor” with the tensor
value according to the mask.
MindSpore: MindSpore API Basically achieves the same function as PyTorch. But PyTorch supports bidirectional broadcast of mask
and “self Tensor”, MindSpore only supports mask
broadcasting to “self Tensor”.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameters |
Parameter 1 |
mask |
mask |
PyTorch supports bidirectional broadcast of |
Parameter 2 |
tensor |
tensor |
- |
Code Example 1
# PyTorch
import torch
self = torch.tensor([0, 0, 0, 0, 0])
mask = torch.tensor([[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]])
source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])
output = self.masked_scatter(mask, source)
print(output)
# tensor([[0, 0, 0, 0, 1],
# [2, 3, 0, 4, 5]])
# MindSpore
import mindspore
from mindspore import Tensor
import numpy as np
self = Tensor(np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]), mindspore.int32)
mask = Tensor(np.array([[False, False, False, True, True], [True, True, False, True, True]]), mindspore.bool_)
source = Tensor(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]), mindspore.int32)
output = self.masked_scatter(mask, source)
print(output)
# [[0 0 0 0 1],
# [2 3 0 4 5]]
Code Example 2
import torch
self = torch.tensor([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])
mask = torch.tensor([0, 0, 0, 1, 1])
source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])
output = self.masked_scatter(mask, source)
print(output)
# tensor([[0, 0, 0, 0, 1],
# [0, 0, 0, 2, 3]])
# MindSpore
import mindspore
from mindspore import Tensor
import numpy as np
self = Tensor(np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]), mindspore.int32)
mask = Tensor(np.array([False, False, False, True, True]), mindspore.bool_)
source = Tensor(np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]), mindspore.int32)
output = self.masked_scatter(mask, source)
print(output)
# [[0 0 0 0 1],
# [0 0 0 2 3]]