Function Differences with torch.nn.functional.interpolate
The following mapping relationships can be found in this file.
PyTorch APIs |
MindSpore APIs |
---|---|
torch.nn.functional.interpolate |
mindspore.ops.interpolate |
torch.nn.functional.upsample |
mindspore.ops.upsample |
torch.nn.Upsample |
mindspore.nn.Upsample |
torch.nn.functional.interpolate
torch.nn.functional.interpolate(
input,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None,
recompute_scale_factor=None) -> Tensor
For more information, see torch.nn.functional.interpolate.
mindspore.ops.interpolate
mindspore.ops.interpolate(
x,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None,
recompute_scale_factor=None) -> Tensor
For more information, see mindspore.ops.interpolate.
Usage
PyTorch: Data is upsampled or downsampled based on size
or scale_factor
. The recompute_scale_factor
controls whether the scale_factor
used for interpolation calculation is re-calculated. If recompute_scale_factor
is True, scale_factor
must be passed in and the output size is calculated using scale_factor
. The calculated output size will be used to infer the new ratio for interpolation. When scale_factor
is a floating point number, it may be different from the re-calculated ratio due to rounding and precision issues. If recompute_scale_factor
is False, interpolation is performed directly using size
or scale_factor
. Interpolation can be performed using one of five modes: ‘nearest’ | ‘linear’ | ‘bilinear’ | ‘bicubic’ | ‘area’. The align_corners
controls the alignment of the coordinates and is effective for ‘linear’ | ‘bilinear’ | ‘bicubic’ modes, with a default value of False.
MindSpore: The functionality is basically the same as PyTorch, but support for some parameters is not complete, such as some modes cannot directly pass in scale_factor
, but can be circumvented by setting the recompute_scale_factor
parameter to True (when scale_factor
is a floating point number, accuracy errors may occur), and the specific differences are as follows.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameter |
Parameter 1 |
size |
size |
- |
Parameter 2 |
scale_factor |
scale_factor |
Function is consistent. Currently only supports ‘area’ mode directly pass in |
|
Parameter 3 |
mode |
mode |
Function is consistent, MindSpore does not support ‘nearest’ (5D) and ‘trilinear’ modes |
|
Parameter 4 |
align_corners |
align_corners |
Function is consistent, but in ‘bicubic’ mode |
|
Parameter 5 |
recompute_scale_factor |
recompute_scale_factor |
- |
|
Input |
Single input |
input |
x |
Same function, different parameter names |
Difference Analysis and Examples
Code Example 1
Using the default ‘nearest’ mode interpolation, pass
size
in and the two APIs achieve the same function.
# Pytorch
import torch
import numpy as np
x = torch.tensor(np.array([[[1, 2, 3], [4, 5, 6]]]).astype(np.float32))
output = torch.nn.functional.interpolate(input=x, size=6)
print(output.numpy())
# [[[1. 1. 2. 2. 3. 3.]
# [4. 4. 5. 5. 6. 6.]]]
# MindSpore
import numpy as np
import mindspore
from mindspore import Tensor
import mindspore.ops as ops
x = Tensor(np.array([[[1, 2, 3], [4, 5, 6]]]).astype(np.float32))
output = ops.interpolate(x, size=6, mode="nearest")
print(output)
# [[[1. 1. 2. 2. 3. 3.]
# [4. 4. 5. 5. 6. 6.]]]
Code Example 2
Using the ‘bilinear’ mode, scale with
scale_factor
. This mode is not directly supported by MindSpore, but the error can be avoided by setting therecompute_scale_factor
parameter to True (whenscale_factor
is a floating point, there may be some inaccuracies).
# Pytorch
import torch
import numpy as np
x = torch.tensor(np.array([[[[1, 2, 3], [4, 5, 6]]]]).astype(np.float32))
output = torch.nn.functional.interpolate(input=x, scale_factor=2.0, mode="bilinear", align_corners=True)
print(output.numpy())
# [[[[1. 1.4000001 1.8 2.2 2.6 3. ]
# [2. 2.4 2.8 3.1999998 3.6000001 4. ]
# [3. 3.4000003 3.8 4.2000003 4.6 5. ]
# [4. 4.4 4.8 5.2 5.6 6. ]]]]
# MindSpore
import numpy as np
import mindspore
from mindspore import Tensor
import mindspore.ops as ops
x = Tensor(np.array([[[[1, 2, 3], [4, 5, 6]]]]).astype(np.float32))
output = ops.interpolate(x, scale_factor=2.0, recompute_scale_factor=True, mode="bilinear", align_corners=True)
print(output)
# [[[[1. 1.4 1.8 2.2 2.6 3. ]
# [2. 2.4 2.8000002 3.2 3.6 4. ]
# [3. 3.4 3.8000002 4.2 4.6 5. ]
# [4. 4.4 4.8 5.2 5.6 6. ]]]]