Function Differences with torch.full
torch.full
torch.full(
size,
fill_value,
*,
out=None,
dtype=None,
layout=torch.strided,
device=None,
requires_grad=False
) -> Tensor
For more information, see torch.full.
mindspore.ops.full
mindspore.ops.full(size, fill_value, *, dtype=None) -> Tensor
For more information, see mindspore.ops.full.
Differences
PyTorch: Return the tensor of the given size filled with fill_value.
MindSpore: MindSpore API implements basically the same function as PyTorch, but with different parameter names.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameters |
Parameter 1 |
size |
size |
Consistent function |
Parameter 2 |
fill_value |
fill_value |
For the parameter fill_value, PyTorch full operator supports the number type, and MindSpore does not support the plural type. |
|
Parameter 3 |
dtype |
dtype |
Consistent function |
|
Parameter 4 |
out |
- |
Not involved |
|
Parameter 5 |
layout |
- |
Not involved |
|
Parameter 6 |
device |
- |
Not involved |
|
Parameter 7 |
requires_grad |
- |
MindSpore does not have this parameter and supports reverse derivation by default |
Code Example 1
# PyTorch
import torch
torch_output = torch.full((2, 3), 1)
print(torch_output.numpy())
# [[1 1 1]
# [1 1 1]]
# MindSpore
import mindspore
ms_tensor_output = mindspore.ops.full((2, 3), 1)
print(ms_tensor_output)
# [[1 1 1]
# [1 1 1]]