Function Differences with torch.nn.functional.dropout2d
torch.nn.functional.dropout2d
torch.nn.functional.dropout2d(input, p=0.5, training=True, inplace=False) -> Tensor
For more information, see torch.nn.functional.dropout2d.
mindspore.ops.dropout2d
mindspore.ops.dropout2d(input, p=0.5, training=True) -> Tensor
For more information, see mindspore.ops.dropout2d.
Differences
PyTorch: During training, dropout2d randomly zeroes some channels of the input tensor with probability p from a Bernoulli distribution, each channel will be zeroed out independently on every forward call which based on Bernoulli distribution probability p. Zeroing some channels of the input tensor is proved that it can effectively reduce over fitting and prevent neuronal coadaptation.
MindSpore: MindSpore API Basically achieves the same function as PyTorch.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameters |
Parameter 1 |
input |
input |
Mindspore only supports a tensor with a rank of 4 as input |
Parameter 2 |
p |
p |
- |
|
Parameter 3 |
training |
training |
- |
|
Parameter 4 |
inplace |
- |
- |
Code Example 1
# PyTorch
import torch
input = torch.ones(3, 2, 4)
output = torch.nn.functional.dropout2d(input)
print(output.shape)
# torch.Size([3, 2, 4])
# MindSpore
import mindspore as ms
from mindspore import ops
from mindspore import Tensor
import numpy as np
input = Tensor(np.ones([3, 2, 4]), ms.float32)
input = input.expand_dims(0)
output = ops.dropout2d(input)
output = output.squeeze(0)
print(output.shape)
# (3, 2, 4)
Code Example 2
# PyTorch
import torch
input = torch.ones(1, 2, 3, 2, 4)
output = torch.nn.functional.dropout2d(input)
print(output.shape)
# torch.Size([1, 2, 3, 2, 4])
# MindSpore
import mindspore as ms
from mindspore import ops
from mindspore import Tensor
import numpy as np
input = Tensor(np.ones([1, 2, 3, 2, 4]), ms.float32)
input = input.squeeze(0)
output = ops.dropout2d(input)
output = output.expand_dims(0)
print(output.shape)
# (1, 2, 3, 2, 4)